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Using a two-layer fluid model, equations are developed which describe long internal 
waves propagating along a channel of arbitrary cross-section. Expressions for the 
phase speed of these waves are derived in terms of geometric properties of the cross- 
section. When weakly nonlinear effects are balanced by weak dispersion, a Korteweg- 
de Vries equation is derived to describe the waves. The effects of a slowly varying 
cross-section are included. Applications of the theory are made to recent observations 
of internal surges in lakes. 

1. Introduction 
I n  recent years there have been a number of observations of long internal waves 

occurring on the thermocline in inland lakes and in coastal waters. All the observations 
show the formation of an internal surge, which steepens owing to nonlinear effects and 
subsequently evolves into a train of shorter period waves, which have tentatively been 
identified as solitary waves, or solitons. These internal surges have been recorded in the 
Strait of Gibraltar (Ziegenbein 1969)) Massachusetts Bay (Halpern 1971; Lee & 
Beardsley 1974) and at  Scripps Pier in La Jolla, California (Winant 1974). Recent 
measurements in inland lakes have been made in Loch Ness (Thorpe 1971 ; Thorpe, 
Hall & Crofts 1972), Seneca Lake in New York State (Hunkins & Fliegel 1973) and 
Lake Babine in British Columbia (Farmer 1978). At present the method of generation 
of these surges is obscure and there may well be no unique mechanism. However, after 
the generation period, an appropriate equation with which to describe the waves is an 
equation of Korteweg-de Vries type (Hunkins & Fliegel 1973; Lee & Beardsley 1974). 
An apparent exception is Loch Ness, where the surge reflects strongly off the ends of 
the lake and may sometimes be in partial resonance with the wind (Thorpe 1974). 

The theories used so far to describe internal surges have used a two-layer fluid model, 
and have ignored both topographic effects in the direction transverse to the surge 
propagation and changes in topography in the direction of surge propagation. Farmer 
(1978), in particular, has drawn attention to the possible importance of the latter effect. 
The purpose of this paper is to provide a theory which takes account of both these 
effects. We shall use a two-layer fluid model and consider weakly nonlinear internal 
waves in a channel of arbitrary cross-section. In  0 2 we shall derive an expression for 
the speed of linear long waves, based on the assumption that the dimensional wave- 
length x is much greater than E,  which is a suitable linear dimension associated with 
the channel cross-section (e.g. the cross-sectional area divided by the width of the 
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FIGURE 1. The co-ordinate system. 

interface between the two fluids). Then in 3 3 we shall consider weakly nonlinear long 
waves and derive a Korteweg-de Vries equation when the nonlinear effects are 
balanced by dispersive effects; if ?i is the dimensional wave amplitude, then the measure 
of nonlinearity is az-l and we shall require this small parameter to be comparable 
with %2X-2) which is the appropriate measure of dispersion. If the interface is shallow, 
then this criterion must be re-examined and we show in 3 4 that the measure for non- 
linearity is then where a is the depth of the 
interface. We shall also allow the cross-section to vary slowly in the direction of wave 
propagation; the relative measure for this slow variation is €3) where e2 = ah-1. The 
Korteweg-de Vries equation that we shall derive is the counterpart for internal waves 
of the equation derived by Peregrine (1968) for surface waves in a channel of uniform 
cross-section. Shen (1968) considered the propagation of weakly nonlinear long waves 
in a compressible fluid down a channel of arbitrary cross-section and obtained a 
Korteweg-de Vries equation for the variation in wave amplitude; subsequently Shen 
& Keller (1973) extended this work to include the effects of rotation and of a slow 
variation in the channel cross-section. However, their results are not directly applicable 
to the present problem, as they assumed that the fluid was barotropic, and so were 
unable to take a limit in which the fluid becomes incompressible yet retains a density 
stratification. I n  $ 4  we shall consider applications. The theory that we shall develop 
is intended to be applicable mainly to the observations of internal surges made in 
inland lakes, and particularly to the observations made by Farmer (1978). However 
the theory may also be relevant to the surges observed in coastal waters when the 
topography has a strong directional preference (e.g. the Strait of Gibraltar). It should 
be noted that our theory implicitly assumes that the horizontal dimension of the 
channel is of the same order of magnitude as the vertical dimension 6. However, this 
is not as severe a restriction as it might seem on first sight; the crucial assumption is 
that the wave amplitude (e.g. the height of the interface) should have a greater 
variation in the direction of wave propagation than in the transverse direction. Clearly 

while that for dispersion is 
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this latter condition may well be satisfied even in wide channels (e.g. in a rectangular 
channel there are no variations in the transverse direction a t  alI). 

We shall use non-dimensional co-ordinates based on the length scale %, the time 
scale (%q-lP-l)4 and the velocity scale (hgP)*. Here P is the ratio (p2 - p l )  (p2 +pl)-', 
where p l ( p 2 )  is the density in the upper (lower) layer. Our scaling is based on the 
anticipated order of magnitude associated with the internal, or interfacial waves. P 
is usually a small parameter (for the observed temperature differences of 6-10 "C, /3 is 
O( and we shall make extensive use of the Boussinesq limit P-+ 0. The co-ordinate 
system is described in figure 1.  The x co-ordinate varies along the channel; the equi- 
librium free surface is z = 0, the equilibrium interface is z = - d, and the sides of the 
channel are specified by y = l*(z, x). The width of the channel a t  the level z is I = I ,  - I - ,  
the width of the equilibrium free surface is 1, = 1 a t  z = 0 ,  while the width of the 
equilibrium interface is Id = I at z = - d.  The flow, assumed inviscid and incompressible, 
is irrotational in each layer. We shall let $i be the velocity potential in Ri, where R, is 
the upper layer and R, is the lower layer. Laplace's equation is satisfied in each region, 
hence 

$izs+$iyy+$iz2 = 0 in Ri, i = 1 , 2 .  (1 .1)  

The boundary conditions at  the free surface z = 5(x, y, t )  are 

(1.2) 5 t - $ l 2 + 5 x # l x + 5 y ~ l y  = 0 at = 6. 
5+ P($lt + i$L + M y  + 9452,) = 0 I 

The first condition is the kinematic condition, while the second condition is the dynamic 
condition of constant pressure. The displacement of the interface is q(x,  y, t ) ,  and a t  
z = -d+y ,  the boundary conditions are the kinematic condition and the dynamic 
condition of continuous pressure. Hence 

On the sides the normal derivative of # must vanish: 
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2. Linear long waves in a channel of uniform cross-section 

condition (1.6) becomes 
I n  a channel of uniform cross-section, I* are independent of x, and the boundary 

#i, = l*zg5iz on y = Z&), i = 1,2. (2.1) 

The equations governing linear waves are then (1.1) with the boundary condition (2.1) 
and the linearized forms of the boundary conditions (1.4) and (1.5): 

6t= #lz, C+P&= 0 on z =  0, (2.2) 

r t = $ ~ ~ = & ~ ,  2rl= (1-/3)g51t-(l+p)9~~ on z = - d .  (2.3) 

(2.4) 

with similar expressions for 7 and 6. Here K is the wavenumber, w is the wave frequency 
and the phase speed is c = W K - ~ .  On substituting (2.4) into the governing equations, 
and subsequently simplifying, i t  follows that 

$iuu + $izz = KZ& in B ~ ,  i = I ,  2, 

dig = I*t,jTi, on y = Z*(Z), i = 1,2, 

& = , ~ K V $ ~  on z = 0, 

We shall seek a solution of (1.1) and (2.1)-(2,3) for which 

#i = &y, z )  exp ( ~ K X  - iwt) ,  

(2.5) 

(2.6) 

Long waves are obtained in the limit K + 0. Hence we shall attempt to  solve (2.5) 

At the lowest order, i t  may easily be shown that $$)) is a constant, A<. Substitution of 
(2.6) into (2.5) then shows that at  the next order in ~2 

1 

i 

$lz = $2Z = - &K2c2{( 1 - p)  $I - (1 + p) on z = - d. 

with expansions of the form 

-*,I $t = $io) + Kz$il)  + K4$j2) + 
C = c , f K 2 C l +  ... . 

(2.7) 

$i.b\+$jiL = A ,  in Ri, i = 1,2,  

qq;) = I*,&) €Q y = I*@), i = 1,2, 

q@ = ,&:A, on z = 0, 

~ ~ t ) = ~ ~ . t ) = - B c f ( ( 1 - / 3 ) A 1 - ( 1 + P ) A z )  on z =  -d .  

Thus $il) satisfies a Poisson equation with a Neumann boundary condition. I n  order 
for (2.7) to have a unique solution must satisfy the compatibility condition 

Substituting (2.7) into (2.8),  i t  follows that, with some rearrangement, 

(2.9) 

Here we recall that Xi is the cross-sectional area of Ri, I, is the breadth of the free surface 
and I,, is the breadth of the interface. Equations (2.9) consist oftwo linear homogeneous 

I A,#, = -A, (& -pc;&l), 
A282 = - - & : I d { ( 1  - , b ) A , - ( 1 + p ) A , ) .  
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equations for A ,  and A,, and can have a solution only if the determinant is zero. This 
condition implies that 

C i y (  1 +p)  l,Z, - Co"{ZdS1( 1 +p, + l,S2( 1 -1) + 2p10s2} + 2S,8, = 0. (2.10) 

This is a quadratic equation for C: which has two real solutions; the greater of the two 
solutions corresponds to a surface wave, while the smaller solution corresponds to an 
interfacial wave. Finally the solution for &l) may be put in the form 

# ) =  Aiqi+Bi, i =  1,2, (2.11) 

where Bi is an undetermined constant and 

(2.12) I +iyy++izz = 1 in Ri, i = 1,2,  

$i, = l*z$iz on y = l&), i = 1,2, 

$lz = pc$ on x = 0, 

$h = - (8, -,8c:lo)/la, $& = S2/& on z = -d .  

Since Bi is undetermined at this stage, it is convenient to impose the following extra 
condition on $i: 

/ / R ' $ i d L l d Z  = 0. (2.13) 

As we commented in 6 1, the validity of our procedure requires that q5cy (and &) be 
much smaller than q5iz; in particular this means that $i, (and is O( I )  with respect 
to K. Thus our results may be applied to wide channels (i.e. when I, is large) provided 
that $iu (and $iz) is O( 1). 

At the second order in K ~ ,  we find that 

(2.14) 

$$; + &!A = q5i1) in Ri, i = 1,2, 

$i2) w - - Z * s & ~ )  on y = Z&), i = I ,  2, 

$$:) = / 3 ~ ~ $ ~ ~ ) + 2 p c , , e ~ A ~  on z = 0,  

$@= $I:)= - ~ c ~ { ( ~ - ~ ) ~ ~ 1 ~ - ( l + ~ ) ~ ~ 1 ~ ) - c o c l { ( i - ~ ) A l - ( l + , 8 ) ~ , ~  on z =  - d .  

I n  order for (2.14) to have a unique solution $ j z )  must satisfy the compatibility con- 
dition 

(2.15) 

Substituting (2.14) into (2.15) and using (2.11), it may be shown that 
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These linear inhomogeneous equations for B, and B2 have a zero determinant [namely 
(2.10)], hence there can be a solution only if the inhomogeneous terms are suitably 
constrained; this constraint determines cl. It may be shown that 

- 4 ~ :  J ((1 - ~ ) ~ 2 $ 1 +  (1 + P )  (~i-pc:~,)  @ P ~ } ~ z J .  (2.17) 
2= - d  

In  the appendix it is shown that cocl is always negative. 
Equation (2.10) determines the long-wave phase speed c,  explicitly, while (2.17) 

determines c1 once @% has been found from (2.12). In  the Boussinesq limit P + O ,  the 
phase speed for the interfacial wave is given by 

(2.18) 

Since usually I ,  2 I,, the coefficient of the term in p is negative and the effect of a finite 
value of p is to decrease the phase speed. The phase speed of the surface wave is 
given by 

(2.19) 

The factor ,I3 occurs in the left-hand side of t.his equation as our scaling of the time was 
based on the speeds associated with the interfacial wave rather than on those associated 
with the surface wave. The leading term in (2.19) is identical with the phase speed for 
surface waves on a homogeneous fluid (Lamb 1932, 5 169). However, taking the limit 
p-. 0 in (2.17), using (2.14), does not produce the expression for c1 which was obtained 
by Peregrine (1968) for surface waves on a homogeneous fluid. The reason is that for 
the surface wave the limits ,8+ 0 and K~ -+ 0 do not commute in the present formulation; 
it may be shown that an alternative formulation will produce the correct expression. 
However the limits p-+ 0 and K ~ +  0 do commute for the interfacial wave. For the 
remainder of this section we shall be concerned only with the interfacial wave whose 
speed is given by (2.13). 

For a shallow interface d 4 1, and in Rl we may put 

E ( z )  = E,{I + bdIz l ( z+d)  + O(Z +d)2}. (2.20) 

Here b, = I,( -d) and is the difference in the slopes of the channel walls at the ends 
of the interface. Since 

r n  
S, = J Z ( Z ) ~ Z  

S, = dZd{l +&b,Z,'d+O(d')}. 

-a  
it  follows that 

(2.21) 

(2.22) 

This expression may be substituted into (2.13) to show that the interfacial wave speed 
(in the limit /3+ 0) is approximately given by 

C: = 2d{ 1 + $b, Z;' d - I, Sil d + O(d2)} .  (2.23) 
Next let 

$l = &,'7,(Zdd)-1 22 + &( 1 - ( I(td)pl) ~2 - &d-1(81+ - A'?-) ZJ + C + G1, (2.24) 
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where y = 0 is chosen to be at  the midpoint of the interface z = - d and S,, is the area 
of Rl which lies in y >< 0. If b,, = l&& - d),  then S,, - 8,- is &d2(b+, + b-,) (1 + O(d)). 
The constant C is so chosen that (2.13) is satisfied. Now g1 satisfies Laplace's equation 
in R,, is zero on z = 0, - d and glV - Z*z I,$,= is O ( d )  on y = I&); also the integral of 
the last quantity over the sides y = Zi(z) is zero. It may then be shown that is O(d2) 
near each end and decays exponentially away from each end within a distance O ( d ) ,  
provided only that l i ,  is O( 1) with respect to d. (Convert the Neumann problem for q1 
to a Dirichlet problem for the conjugate function whose boundary values are zero 
on z = 0, -d  and O(d2)  on the sides y = l&), whose length is O(d).) Note that (2.24) 
implies that kl, is O(dZd) ($ls is O ( d ) )  and that this is 0(1) provided that dl, is O(1). 
Substituting (2.24) into (2.17) and taking the Boussinesq limit p+0,  it follows that 

(2.25) 

Next we shall consider the special case when the channel is rectangular and of total 
depth h, so that Z*(z) = k ild for 0 > z > - h. Then Zo = 1,) 8, = dZ, and S, = (h  - d )  la .  
The interfacial wave speed is given by (in the limit p+ 0) 

C$ = 2d( 1 -dh-l). (2.26) 
It may be shown that 

(2.27) 

and hence c1/ci = -&h. (2.28) 

When the channel cross-section is a triangle of total depth h, we may put 
l ( z )  = l0h-l(h + z )  for 0 > z > - h. Hence 

$ 1 - - 1 2 2  - Qd2, $2 = &(h + 2)'- +(h - d)' 

1, = ZOh-'(h-d)) bd = Z0h-l) fl1 = &I,h-'(2hd-h2), 8 2  = &ld(h-d) .  

The interfacial wave speed is given by (in the limit ,8+ 0) 

c; = 2d( 1 - dh-1) ( 1  - *ah-'). (2.29) 

Remarkably, this is independent of the width of the interface [(2.10) shows that, in 
general, co is a function of p, Sl/l,, S2/ld, and lo,&, but for the case of a triangular 
cross-section, the last three parameters are functions of d and h alone]. Also the ratio 
of the speed in a triangular channel to t,hat in a rectangular channel of the same depth 
is (1 - &dh-')a, which varies from 1 when d = 0 to 0.7 when d = h. To find c1 we must 
find $1, which in general must be achieved numerically. However if the cross-section 
is an isosceles triangle (i.e. I, = - I - )  then it may be shown that 

$z = *{y2 + (h  + z ) ~ }  -$(h ( 1  +?Zbi). (2.30) 

Note that y?zu is O(1,) and so, in this instance, 1, must be O( 1) .  Next, from the shallow- 
interface approximation (2.25) it follows that 

(2.31) 

Finally, we note that the appropriate measure for dispersive effects is c,c,~K' .  In  
terms of the dimensional wavelength X, K = 27rD-l) and so the measure for dispersion 
is C , C , ~ ~ ~ X - ~ .  For a shallow interface (2.28) and (2.31) suggest that c1c03 varies as h, 
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while from (2.23), c$ varies as d ;  in this case the measure for dispersion is a&X-2,  where 
a is the dimensional depth of the interface. 

3. Nonlinear long waves in a channel of varying cross-section 
For weakly nonlinear long waves whose linear dispersion relation has the form (2.6) 

it is well known that if e is a measure of weak dispersion then e2 is the appropriate 
measure of wave amplitude. We shall also allow the channel cross-section to vary slowly 
in the x direction so we shall allow l& to be functions of x. It was shown by Johnson 
( 1 9 7 3 ~ )  that, for surface waves travelling in a rectangular channel of varying depth, 
the appropriate measure for the slow variation of depth is e3. It is easily verified that 
this is also the appropriate measure in the present case, and so we let l* = I&, X ) ,  
where 

The boundary condition (1.6) then becomes 

x = e3x. (3.1) 

#iy = l ~ z # i z + e 3 E ~ x # i x  on y = l&,X) ,  i = 1,2. (3.2) 

The cross-sectional areas S, and S2 and the interface lengths I ,  and lo are now functions 
of X ,  so co and c1 are functions of X given by (2.10) and (2.17) respectively; also $i is 
a function of y, z and X ,  the dependence on X being determined parametrically from 
(2.12). 

We anticipate that, to leading order in e, the waves will travel with speed co and 
hence we introduce the convected co-ordinate 

X 
‘g = e-2s 0 {co(X’))- ldX’-et .  (3.3) 

Then we seek a solution in which 7 and 6 are functions of 5 and X and the r#$ are 
functions of y, z ,  ‘g and X. We note that 

and put 

?#I = €Z(T/(O)  + € 2 ? p  + . . . ), g = s2(qo’ + e 2 p  + . . . ), q5i = €($by) + € 2 # p  + . . . ). (3.5) 

These expressions are then substituted into ( 1 . 1 )  and the boundary conditions (1.4), 
(1.6) and (3.2). Before proceeding with this calculation we note that (1 .1)  becomes 

+ + e2ci2#icE + 2e4c;1#icx - ~ ~ c ~ ~ c i j ~ &  + e6q5izs = 0 in Ri, i = 1,2. (3.6) 

At the lowest order in e it may easily be shown that #i is independent of y and z and 
hence we put 

r#p = A&,X),  i = 1,2. (3.7) 

These functions Ai are the counterparts of the constants A< obtained in $2. Comparing 
(3.7) with (3.4) and (3.5) we see that derivatives with respect to x and t are O(e), while 
derivatives with respect toy and z are O(e2).  As we noted in the introduction, this is the 
crucial assumption in the theory, rather than the assumption that the horizontal 
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dimension of the channel is of the same order of magnitude as the vertical dimension. 
Also the boundary conditions (1.4) and (1.5) show that 

Qo) = PA,, q ( O )  = + ( 1 + P ) A,, - +( 1 - p) Ale. (3.8) 

At the next order in e, it follows from (3.6) and the boundary conditions (3.2), (1.4) 
and (1.5) that 

&L+#& = -cz2Ait5 in Ri, i = 1,2,  

q$J = Z*aq5$i) on y = I&), i = I , Z ,  

#!:) = -cf" on z = 0, (3.9) I &j) = #i:) = -qp) on z = -d.  

Also the boundary conditions (1.4) and (1.5) show that 

<(l) = ,8(# - +co2 A:[) on z = 0, 
2@) = (1 +p) &) - (1 -p)  # - &02( 1 +p)  A:[ + +c;2(1 -p)  A$ on z = - d. 

The solution of (3.9) is given by 

= - co2 Ai, $i + Bi, i = 1,2,  (3.11) 

where Bi is an undetermined function off; and X and $i is defined by (2.12) and (2.13). 
For (3.11) to be a solution the compatibility condition (2 .8)  must be satisfied, and 
this leads to (2.9) and (2.10) as before. At this stage co is a known function of X, and 
from (2.9) and (3.8), A,, A ,  and <(O) are known in terms of q ( O ) .  

At second order in 8 we find that 

The solution for $iz) must satisfy the Compatibility condition (2.8); as in 92 this leads 
to two equations €or Bi, and the condition that these equations have a solution for Bi 
provides the required equation for q ( O ) .  Examination of (3.10) and Ye  &homogeneous 
terms in (3.12) shows that the equation for q ( O )  involves q ( O ) ,  q(2, q(O)q?) and qgk. After 
considerable manipulation we find that 

7%) + & p q p  - c 1 c-4 0 755, (0 )  + V ( O )  = 0, (3.13) 

where c1 (a function of X )  is defined by (2.17). The presence of c1 in the coefficient of 
qLF4 is to be expected from the linear dispersion relation (2.6). The coefficient 6 is 
given by 
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Here b, = l,( - d, X) and b, = l# (O,  X ) .  Also the coefficient v is given by 

where 

1 v = y - l yx ,  

Equation (3.13) may be simplified by putting 

and then it follows that 
7”i = y p ’ ,  

qx + 6y-1@7”i5 - C1C04ij55f = 0. 

(3.16) 

(3.16) 

(3.17) 

Equation (3.17) can now be recognized as a variable-coefficient Korteweg-de Vries 
equation. The coescient y may be interpreted as the appropriate Green’s law factor 
for the present problem. In  the linear, non-dispersive limit (3.17) shows that @ is 
conserved; it may be shown that this result is equivalent to theconservation of energy 
flux. 

First let us note that if the channel has uniform cross-section, so that, in particular, 
c, is a constant, then 6 = s(c;‘x-t). If we put 7 = c o t  = s(z-c,t) and T = e3t, (3.13) 
then reduces to the more familiar constant-coefficient Korteweg-de Vries equation 

@) + c;6p’?j:o’ - clTg; = 0, (3.18) 

a t  least to within an error of O(e2). 
Next let us consider the Boussinesq limit p + O .  The phase speed c, is then given by 

(2.18) for the interfacial wave and (2.19) for the surface wave. In  the same limit, for the 
interfacial wave 

(3.19) 

Since, for most applications, S, > S, and b, is positive, (3.19) shows that 6 will usually 
be negative. For the surface wave, 

and it may be shown that (3.17) becomes 

where 

(3.20) 

(3.21) 

(3.22) 
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In  the limit ,8+ 0,  (3.22) is the variable-coefficient Korteweg-de Vries equation for 
surface waves in a channel of varying cross-section. I f  the channel has uniform cross- 
section then (3.22) agrees with the Korteweg-de Vries equation derived by Peregrine 
(1968)’ for surface waves in a channel of uniform cross-section. Equation (3.22) also 
generalizes the result obtained by Johnson ( 1 9 7 3 ~ )  for surface waves in a rectangular 
channel of varying depth. In  this case ,8ci = h, c0X = 3/2h and c1co3 = -&h, and our 
results agree with those obtained by Johnson (loc. cit.). 

In  the shallow-interface approximation (d < 1), co is given by (2.23) and c1 is given 
by (2.25). For the interfacial wave, (3.19) becomes 

(3.23) 

Since d does not vary with X ,  we see from (2.23) and (3.23) that co and S are largely 
unaffected by the variable cross-section when the interface is shallow, while y varies 
principally as 12. The coefficient c1 is given by (2.25) and may be expected to depend 
on the cross-section S, in a complicated manner. 

Next we shall consider the special case when the channel is a rectangle of total 
depth h. Then co and c1 are given by (2.26) and (2.28), while from (3.19) 

cg6 = - 3( 1 - 2d/h) + O(P). (3.24) 

This result agrees with that obtained by Keulegan (1953; see also Long 1956; Lee & 
Beardsley 1974). Finally, consider the case when the channel is a triangle of total 
depth h and l ( z )  = Z,(h + z)/h for 0 > x > - h. Then co and c1 are given by (2.29) and 
(2.31) while from (3.19) it  may be shown that 

2 4 6  = ( - 6 + 22d/h - 1 1d2/h2) (1 + O(p) ) .  (3.25) 

Thus 8 is negative (positive) when d/h < 0-33 ( >  0.33). This result may be compared 
with the corresponding result (3.24) for a rectangle, where 6 is negative (positive) 
when dlh < 0.50 ( > 0.50). Like co, 6 is independent of the width of the interface. 

4. Discussion 

we shall display again for convenience: 
In  this section we shall consider the solutions of (3.13) or equivalently (3.17), which 

f)x+6y-1f)~c-clc~4~665 = 0, where f )  = y+O). (4.1) 

Here y(O)is the height of the interface, the ‘Green’s law’ factory is defined by (3.15), the 
nonlinear coefficient 6 is defined by (3.14) and the dispersion coefficient c1 is defined by 
(2.17). Also we recall that 5 is the convected co-ordinate 

e-2~ox{co(X‘)}-1dX’ -d, X = s3x, 

and co is the linear long-wave phase speed (2. lo). On the basis of the shallow-interface 
and Boussinesq approximation (3.23), we shall assume that the coefficient 6 is negative. 
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Also we note that co is positive and c1 is negative. Equation (4.1) is to be solved with an 
initial’ condition that specifies ~ ( 0 )  as a function of f a t  some particular fixed value 

of X; from (3.3) this is equivalent to specifying ~ ( 0 )  as a fimction of time (at some 
fixed value of X ) .  

4.1. Nonlinear steepening 

Observations of long internal waves show that the generation of an internal surge is 
followed by a phase in which nonlinear steepening is the dominant process, which is 
followed in turn by the formation of shorter period waves due to the interplay between 
dispersion and nonlinearity (see Lee & Beardsley 1974; Farmer 1978). In  this sub- 
section we shall ignore dispersive effects, and so ignore the term whose coefficient is 
c1 in (3.17). The equation to be considered is thus 

q, + Sy-lqqc = 0, 9 = y p ’ .  (4.2) 

The general solution of (4.2) is 
9‘0’ = r ’ f ( 5 - t  q‘O’S), 1 

where 
(4.3) 

Here yo (a constant) is the value of y at X = 0, and f ( f )  is the specified initial value 
of $0) at X = 0. The solution (4.3) remains valid provided that 

(4.4) 1 # Sf ‘($+ ay‘O’S). 

Since 6 is negative, S is positive and (4.4) cannot be violated iff ’ is negative; iff’ is 
positive then the first value of S at which (4.4) is violated defines a breaking distance. 
In  general (4.3) shows that waves of elevation break backwards as they propagate, 
while waves of depression break forwards. These results agree with those of Long 
(1972), who considered the special case when the channel has a constant rectangular 
cross-section. Of course, as the surge begins to steepen, dispersive effects become 
important and the last term in (4.2) must be retained; this will be discussed in 54.2. 
Meanwhile we shall continue to discuss (4.2). 

Further progress depends on specifying the coefficients 6 and y. In  the Boussinesq 
limit ( P + O )  and the shallow-interface approximation (d  4 l ) ,  S and y are given by 
(3.23); since d does not vary with X, S remains effectively constant while y varies as li. 
Farmer (1978) has observed internal surges in Lake Babine, which narrows by a 
factor oftwo in the direction of the surge propagation. If y decreases withincreasingx, 
then it is apparent from (4.2) and (4.3) that the steepening process is enhanced both 
by the Green’s Law factor and by the increased value of S for a given X .  To be specific 
let us assume that 1, varies linearly with X, so that 

a = (1 - q X ) t ,  (4.5) 

-6X = S(1 +ipS-1S). (4.6) 

where q is a constant. Then, on substituting into (4.2), it  follows that 

For instance, for that value of X at which ld has been reduced by a factor of two, the 
fractional increase in the value of S relative to - 6X (the value of S if ld is constant, 
i.e. q = 0 or u = 1) is approximately 3. To gauge the effect on the wave amplitude, let 
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FIGURE 2. Plot of ~/‘‘’/pt against X’ [see (4.9)J for q‘ = 0, i, &, 2, 1. 

us suppose that f ( 6 )  contains a segment of constant positive slope p and that outside 
this segment f‘(5) is negative. Specifically we put 

f(5) = p t  for 151 < 51. (4.7) 

q ( O )  = p<( 1 -pS)- l  for 151 < Cl( 1 -pS).  (4.8) 

The solution determined from (4.3) is 

The solution is valid for pS  < 1,  and fails a t  pS  = 1, which defines the breaking 
distance. The solution in the region 161 > t1( 1 -pS)  need not concern us, as there is no 
steepening in this region. We wish to compare this solution with the corresponding 
solution when f?, is a constant (q  = 0 or u = 1) .  From (4.6) and (4.8), ~(O)(p&l is 
a function of X’ = plBIX, with a parametric dependence on q‘ = q(pI81)-1: 

where 
(7 = (1 -q’X’)k  

Figure 2 displays this function for various values of q’. When q’ = 0, y(O) has doubled in 
value when X‘ = 0.5;  by contrast, when q’ = 1 (i.e. 1, has been reduced by a factor of 
two), q ( O )  has increased in value by a factor of 3-4. In  summary, a decrease in the width 
of the channel can be as effective as nonlinear processes in increasing the amplitude 
of the surge, and this may be relevant to the large amplitude surges observed in Lake 
Babine. However, in comparing our theory with observations, it should be noted that 
the theory ignores Coriolis forces, which may be significant in the development of the 
surge, which takes place on a time scale of a day, rather than an hour. 
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4.2. Soliton formation 

When the internal surge approaches the breaking distance, dispersive effects become 
important and the equation to be solved is than (4.1), with an initial condition that 
specifies ~ ( 0 )  at some appropriate value of X ;  the initial T ( O )  is given by (4.3) and one 
of the principal effects of allowing the cross-section to vary is to alter this initial 
condition. If the Korteweg-de Vries equation (4. I )  has constant coefficients, then 
there is a solitary-wave solution, or soliton: 

where (4.10) 

Since c1 and 6 are negative, the amplitude a is also negative and this is a wave of 
depression travelling in the + X direction. I ts  speed is co( 1 + e2c0 V-l) and its e-folding 
width is 2cO(ek)-1. It is now well known that the constant-coefficient Korteweg- 
de Vries equation also has N-soliton solutions (see Whitham 1974, chap. 17) and that 
an initially smooth wave profile will evolve into a train of solitons. If f(E) is the initial 
condition, then an asymptotic expression for the number N of solitons produced is 

(4.11) 

Using the Boussinesq limit (p+ 0) and the shallow-interface approximation, we can 
assume that 6 and co do not vary with X .  Then (4.10) shows that the solitary-wave 
speed (for a given amplitude) is unaffected by a change in the cross-section, but that 
the width is affected, being decreased by a decrease in cl. Examining (4.11), we see 
that the number N of solitons produced is increased by a decrease in cl, and is also 
increased by an increase in the initial condition, i.e. 

is increased. 
Hunkins & Fliegel (1973) have observed the formation of a train of short period 

internal waves in Seneca Lake and Farmer (1978) has made similar observations in 
Lake Babine. The latter are particularly interesting as the formation of a train of 
internal waves was most prominent at  a point in the lake where the cross-section had 
narrowed by a factor of two from the region where the internal surge was generated; 
also the maximum depth decreases by a factor of three. If  we approximate the cross- 
section by a triangle and use (2.26) to estimate cl, then c1 decreases by approximately 
25 yo from the generation region, thus favouring the formation of solitons. However, 
the major factor affecting the formation of solitons in Lake Babine is likely to be the 
decrease in the width I, and the corresponding decrease in y ,  which causes an increase 
in the nonlinear steepening as described in 9 4.1. If x is the dimensional width of a 
solitary wave, fE is the dimensional depth and CC is the dimensional amplitude, then 
(4.10) shows that 

(4.12) 
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For a shallow interface c1c03 varies ash [cf. (2.28) and (2.31)], cf varies as d [cf. (2.23)], 
while 6 varies as d-8 [cf. (3.23)]. The right-hand side of (4.12) then varies as d2. Hence 
we may deduce from (4.12) that nonlinear effects are balancing dispersive effects 
when a x 2  is comparable with fEd2, where d is the dimensional depth o f  the interface; 
since ax);-2 is the appropriate measure for dispersion when the interface is shallow, 
this implies that the appropriate measure for nonlinear effects is ad-l .  Farmer (1978) 
has observed internal waves of amplitude 10 m (in a depth of approximately 100 m), 
phase speed 0.2 m s-l and wavelength approximately 460 m. Using (2.31) we estimate 
that c1c03 is approximately - 0.77 at the point where the waves are observed (bd is 
approximately 15). Also, using (2.29) to estimate co and (3.25) to estimate 6, with 
dh-l = 0-2, we find that (4.12) gives a value for X of 550 m. That this is an overestimate 
is probably due to an overestimate of c l ;  if the lake is modelled by a rectangular channel 
then c1c03 is -&; in general, c1 is very sensitive to the shape of the cross-section. By 
contrast, co and 6 depend mainly on d and are fairly insensitive to the shape of the 
cross-section. Using (2.29) with dh-I = 0.2, we find that the theoretical dimensional 
phase speed is 0.24 m s-l (for the observed temperature difference across the interface 
in Lake Babine p = 0.2 x 

4.3. Xlowly varying solitary wave 

When the coefficients of the Korteweg-de Vries equation (4.1) are functions of X ,  
there is no simple analytic solution. However, when the variation in the channel cross- 
section is O(m3) ,  where CT < 1, then there is an asymptotic solution which describes 
a slowly varying solitary wave. The procedure for constructing this solution has been 
described by Grimshaw (1970) and Johnson (1973 b )  for surface solitary waves travel- 
ling in a rectangular channel of varying depth, so we shall give only a brief description 
here. 

We shall suppose that co, cl,  y and 6 are functions o f 8  = pX and we shall then seek 
a solution of (3.17) in which q ( O )  depends on 3 and 8, where 

(4.13) 

Here a, k and V are related by the formulae in (4.10), and are functions of 8. Substi- 
tuting (4.13) into (3.17) shows that, from the term of order one in p, 

- yV-lq$Y + ${a sech2 k8qio)}, - yclc~4qi$Ls + a(ya sech2 k8)/& = 0. (4.14) 

The necessary and sufficient condition that this equation for qi0) should have a solution 
which is bounded as 8 -+ & co is 

(yasech2k8)2d8 = 0. (4.15) 

On integrating and using (4.10), this condition becomes 

c,ci4y46-la3 = constant. (4.16) 

This equation determines the variation of the amplitude a as 8 varies. In  the 
Boussinesq limit (p-+ 0 )  and the shallow-interface approximation, co [see (2.23)] and 
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6 [see (3.23)] do not vary with 8, while y [see (3.23)] varies as 1 2 ;  hence a varies as 
E;)c;*. In  a rectangular channel c1 [see (2.28)] varies as I t ,  while in a triangular channel 
c1 [see (2.31)] varies as h(l++&). 

The result (4.16) may also be applied to a surface solitary wave. I f  a’ is the amplitude 
of such a wave then 

~~c;9’~CS’--la’3 = constant, (4.17) 

where y‘ and 6‘ are defined in (3.22). This result follows most directly by applying the 
above method to (3.22) directly. For a rectangular channel co varies as hi, cl varies 
as h8, 6’ varies as h-8 and y‘ varies as Zkha; it follows from (4.17) that a’ then varies 
as h-ll$, which agrees with the result obtained by Miles (1977), who consideredsurface 
solitary waves in a slowly varying channel (see also Grimshaw (1970) and Johnson 
(19733), who considered only the effect of changes in the depth h). 

I am grateful to Dr D. M. Farmer for showing me a draft of his manuscript prior to 
publication. 

Appendix. Alternative expression for c1 

show that cocl is negative. First let us consider the integral identity 
In  this appendix we shall derive an alternative expression to (2.17) for c1 and hence 

where u is any function (with continuous second derivatives in R). Then apply (A 1 )  
to $i in Ri; using (2.5) it follows that 

where 

If we now differentiate (A 2) with respect to K ,  integrate by parts where necessary and 
use (2.5) again, it  may be shown that 

(dc2 /d~2)  (K~I+ K ~ Q )  = - c2Q. (A 3) 

Since I and Q are positive, it  follows immediately that dc2/dK2 is negative, and com- 
parison with (2.6) shows that cocl is negative. Further, on substituting (2.6) and (2.11) 
into (A 3) it  may be shown that 
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Next, using (A 1) and (2.12), it follows that 

On substituting (A 5)  into (A a),  it is easily shown that (A 4) agrees with (2.17) 
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