Long nonlinear internal waves in channels of arbitrary cross-section

By R. H. J. GRIMSHA W
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

(Received 3 May 1977 and in revised form 10 August 1977)
Using a two-layer fluid model, equations are developed which describe long internal waves propagating along a channel of arbitrary cross-section. Expressions for the phase speed of these waves are derived in terms of geometric properties of the crosssection. When weakly nonlinear effects are balanced by weak dispersion, a Kortewegde Vries equation is derived to describe the waves. The effects of a slowly varying cross-section are included. Applications of the theory are made to recent observations of internal surges in lakes.

1. Introduction

In recent years there have been a number of observations of long internal waves occurring on the thermocline in inland lakes and in coastal waters. All the observations show the formation of an internal surge, which steepens owing to nonlinear effects and subsequently evolves into a train of shorter period waves, which have tentatively been identified as solitary waves, or solitons. These internal surges have been recorded in the Strait of Gibraltar (Ziegenbein 1969), Massachusetts Bay (Halpern 1971; Lee \& Beardsley 1974) and at Scripps Pier in La Jolla, California (Winant 1974). Recent measurements in inland lakes have been made in Loch Ness (Thorpe 1971; Thorpe, Hall \& Crofts 1972), Seneca Lake in New York State (Hunkins \& Fliegel 1973) and Lake Babine in British Columbia (Farmer 1978). At present the method of generation of these surges is obscure and there may well be no unique mechanism. However, after the generation period, an appropriate equation with which to describe the waves is an equation of Korteweg-de Vries type (Hunkins \& Fliegel 1973; Lee \& Beardsley 1974). An apparent exception is Loch Ness, where the surge reflects strongly off the ends of the lake and may sometimes be in partial resonance with the wind (Thorpe 1974).
The theories used so far to describe internal surges have used a two-layer fluid model, and have ignored both topographic effects in the direction transverse to the surge propagation and changes in topography in the direction of surge propagation. Farmer (1978), in particular, has drawn attention to the possible importance of the latter effect. The purpose of this paper is to provide a theory which takes account of both these effects. We shall use a two-layer fluid model and consider weakly nonlinear internal waves in a channel of arbitrary cross-section. In $\S 2$ we shall derive an expression for the speed of linear long waves, based on the assumption that the dimensional wavelength $\bar{\lambda}$ is much greater than \bar{h}, which is a suitable linear dimension associated with the channel cross-section (e.g. the cross-sectional area divided by the width of the

Figure 1. The co-ordinate system.
interface between the two fluids). Then in §3 we shall consider weakly nonlinear long waves and derive a Korteweg-de Vries equation when the nonlinear effects are balanced by dispersive effects; if \bar{a} is the dimensional wave amplitude, then the measure of nonlinearity is $\bar{a} \bar{h}^{-1}$ and we shall require this small parameter to be comparable with $\bar{h}^{2} \bar{\lambda}^{-2}$, which is the appropriate measure of dispersion. If the interface is shallow, then this criterion must be re-examined and we show in §4 that the measure for nonlinearity is then $\bar{a} \bar{d}^{-1}$, while that for dispersion is $\bar{d} \bar{h}^{-2}$, where \bar{d} is the depth of the interface. We shall also allow the cross-section to vary slowly in the direction of wave propagation; the relative measure for this slow variation is ϵ^{3}, where $\epsilon^{2}=\bar{a} \bar{h}^{-1}$. The Korteweg-de Vries equation that we shall derive is the counterpart for internal waves of the equation derived by Peregrine (1968) for surface waves in a channel of uniform cross-section. Shen (1968) considered the propagation of weakly nonlinear long waves in a compressible fluid down a channel of arbitrary cross-section and obtained a Korteweg-de Vries equation for the variation in wave amplitude; subsequently Shen \& Keller (1973) extended this work to include the effects of rotation and of a slow variation in the channel cross-section. However, their results are not directly applicable to the present problem, as they assumed that the fluid was barotropic, and so were unable to take a limit in which the fluid becomes incompressible yet retains a density stratification. In §4 we shall consider applications. The theory that we shall develop is intended to be applicable mainly to the observations of internal surges made in inland lakes, and particularly to the observations made by Farmer (1978). However the theory may also be relevant to the surges observed in coastal waters when the topography has a strong directional preference (e.g. the Strait of Gibraltar). It should be noted that our theory implicitly assumes that the horizontal dimension of the channel is of the same order of magnitude as the vertical dimension \bar{h}. However, this is not as severe a restriction as it might seem on first sight; the crucial assumption is that the wave amplitude (e.g. the height of the interface) should have a greater variation in the direction of wave propagation than in the transverse direction. Clearly
this latter condition may well be satisfied even in wide channels (e.g. in a rectangular channel there are no variations in the transverse direction at all).

We shall use non-dimensional co-ordinates based on the length scale \bar{h}, the time scale $\left(\bar{h} g^{-1} \beta^{-1}\right)^{\frac{1}{2}}$ and the velocity scale $(\bar{h} g \beta)^{\frac{1}{2}}$. Here β is the ratio $\left(\rho_{2}-\rho_{1}\right)\left(\rho_{2}+\rho_{1}\right)^{-1}$, where $\rho_{1}\left(\rho_{2}\right)$ is the density in the upper (lower) layer. Our scaling is based on the anticipated order of magnitude associated with the internal, or interfacial waves. β is usually a small parameter (for the observed temperature differences of $6-10^{\circ} \mathrm{C}, \beta$ is $O\left(10^{-3}\right)$), and we shall make extensive use of the Boussinesq limit $\beta \rightarrow 0$. The co-ordinate system is described in figure 1 . The x co-ordinate varies along the channel; the equilibrium free surface is $z=0$, the equilibrium interface is $z=-d$, and the sides of the channel are specified by $y=l_{ \pm}(z, x)$. The width of the channel at the level z is $l=l_{+}-l_{-}$, the width of the equilibrium free surface is $l_{0}=l$ at $z=0$, while the width of the equilibrium interface is $l_{d}=l$ at $z=-d$. The flow, assumed inviscid and incompressible, is irrotational in each layer. We shall let ϕ_{i} be the velocity potential in R_{i}, where R_{1} is the upper layer and R_{2} is the lower layer. Laplace's equation is satisfied in each region, hence

$$
\begin{equation*}
\phi_{i x x}+\phi_{i y y}+\phi_{i z z}=0 \quad \text { in } \quad R_{i}, \quad i=1,2 . \tag{1.1}
\end{equation*}
$$

The boundary conditions at the free surface $z=\zeta(x, y, t)$ are

$$
\left.\begin{array}{r}
\zeta_{t}-\phi_{1 z}+\zeta_{x} \phi_{1 x}+\zeta_{y} \phi_{1 y}=0 \tag{1.2}\\
\zeta+\beta\left(\phi_{1 t}+\frac{1}{2} \phi_{1 x}^{2}+\frac{1}{2} \phi_{1 y}^{2}+\frac{1}{2} \phi_{1 z}^{2}\right)=0
\end{array}\right\} \quad \text { at } \quad z=\zeta .
$$

The first condition is the kinematic condition, while the second condition is the dynamic condition of constant pressure. The displacement of the interface is $\eta(x, y, t)$, and at $z=-d+\eta$, the boundary conditions are the kinematic condition and the dynamic condition of continuous pressure. Hence

$$
\left.\begin{array}{c}
\eta_{t}-\phi_{i z}+\eta_{x} \phi_{i x}+\eta_{y} \phi_{i y}=0, \quad i=1,2, \tag{1.3}\\
(1-\beta)\left\{\eta+\beta\left(\phi_{1 t}+\frac{1}{2} \phi_{1 x}^{2}+\frac{1}{2} \phi_{1 y}^{2}+\frac{1}{2} \phi_{1 z}^{2}\right)\right\} \\
=(1+\beta)\left\{\eta+\beta\left(\phi_{2 t}+\frac{1}{2} \phi_{2 x}^{2}+\frac{1}{2} \phi_{2 y}^{2}+\frac{1}{2} \phi_{2 z}^{2}\right)\right\}
\end{array}\right\} \text { at } z=-d+\eta .
$$

Both these boundary conditions (1.2) and (1.3) may be linearized about $z=0$ and $z=-d$ respectively. Retaining only the linear and quadratic terms we find that, after some manipulation using (1.1),

$$
\left.\begin{array}{r}
\zeta_{t}-\phi_{1 z}+\left(\zeta \phi_{1 x}\right)_{x}+\left(\zeta \phi_{1 y}\right)_{y}+\ldots=0 \tag{1.4}\\
\zeta+\beta\left\{\phi_{1 t}+\zeta \phi_{1 t z}+\frac{1}{2} \phi_{1 x}^{2}+\frac{1}{2} \phi_{1 y}^{2}+\frac{1}{2} \phi_{1 z}^{2}\right\}+\ldots=0
\end{array}\right\} \quad \text { at } \quad z=0
$$

and

$$
\left.\begin{array}{c}
\eta_{t}-\phi_{1 z}+\left(\eta \phi_{i x}\right)_{x}+\left(\eta \phi_{i y}\right)_{y}+\ldots=0, \quad i=1,2, \tag{1.5}\\
2 \eta=(1-\beta)\left(\phi_{1 t}+\eta \phi_{1 t z}+\frac{1}{2} \phi_{1 x}^{2}+\frac{1}{2} \phi_{1 y}^{2}+\frac{1}{2} \phi_{1 z}^{2}\right) \\
-(1+\beta)\left(\phi_{2 t}+\eta \phi_{2 t z}+\frac{1}{2} \phi_{2 x}^{2}+\frac{1}{2} \phi_{2 y}^{2}+\frac{1}{2} \phi_{2 z}^{2}\right)+\ldots
\end{array}\right\} \text { at } z=-d .
$$

On the sides the normal derivative of ϕ must vanish:

$$
\begin{equation*}
\phi_{i y}=l_{ \pm x} \phi_{i x}+l_{ \pm z} \phi_{i z} \quad \text { on } \quad y=l_{ \pm}(z, x), \quad i=1,2 . \tag{1.6}
\end{equation*}
$$

2. Linear long waves in a channel of uniform cross-section

In a channel of uniform cross-section, $l_{ \pm}$are independent of x, and the boundary condition (1.6) becomes

$$
\begin{equation*}
\phi_{i y}=l_{ \pm z} \phi_{i z} \quad \text { on } \quad y=l_{ \pm}(z), \quad i=1,2 \tag{2.1}
\end{equation*}
$$

The equations governing linear waves are then (1.1) with the boundary condition (2.1) and the linearized forms of the boundary conditions (1.4) and (1.5):

$$
\begin{gather*}
\zeta_{t}=\phi_{1 z}, \quad \zeta+\beta \phi_{1 t}=0 \quad \text { on } \quad z=0 \tag{2.2}\\
\eta_{t}=\phi_{1 z}=\phi_{2 z}, \quad 2 \eta=(1-\beta) \phi_{1 t}-(1+\beta) \phi_{2 t} \quad \text { on } \quad z=-d . \tag{2.3}
\end{gather*}
$$

We shall seek a solution of (1.1) and (2.1)-(2.3) for which

$$
\begin{equation*}
\phi_{i}=\hat{\phi}_{i}(y, z) \exp (i \kappa x-i \omega t), \tag{2.4}
\end{equation*}
$$

with similar expressions for η and ζ. Here κ is the wavenumber, ω is the wave frequency and the phase speed is $c=\omega \kappa^{-1}$. On substituting (2.4) into the governing equations, and subsequently simplifying, it follows that

$$
\left.\begin{array}{c}
\hat{\phi}_{i y y}+\hat{\phi}_{i z z}=\kappa^{2} \hat{\phi}_{1} \quad \text { in } \quad R_{i}, \quad i=1,2, \tag{2.5}\\
\hat{\phi}_{i y}=l_{ \pm z} \hat{\phi}_{i z} \quad \text { on } \quad y=l_{ \pm}(z), \quad i=1,2, \\
\hat{\phi}_{1 z}=\beta \kappa^{2} c^{2} \hat{\phi}_{1} \text { on } \quad z=0, \\
\hat{\phi}_{2 z}=-\frac{1}{2} \kappa^{2} c^{2}\left\{(1-\beta) \hat{\phi}_{1}-(1+\beta) \hat{\phi}_{2}\right\} \quad \text { on } \quad z=-d .
\end{array}\right\}
$$

Long waves are obtained in the limit $\kappa \rightarrow 0$. Hence we shall attempt to solve (2.5) with expansions of the form

$$
\left.\begin{array}{c}
\hat{\phi}_{i}=\hat{\phi}_{i}^{(0)}+\kappa^{2} \hat{\phi}_{i}^{(1)}+\kappa^{4} \hat{\phi}_{i}^{(2)}+\ldots, \tag{2.6}\\
c=c_{0}+\kappa^{2} c_{1}+\ldots
\end{array}\right\}
$$

At the lowest order, it may easily be shown that $\hat{\phi}_{i}^{(0)}$ is a constant, A_{i}. Substitution of (2.6) into (2.5) then shows that at the next order in κ^{2}

$$
\left.\begin{array}{r}
\hat{\phi}_{i y y}^{(1)}+\hat{\phi}_{z z}^{(1)}=A_{i} \text { in } R_{i}, \quad i=1,2, \tag{2.7}\\
\hat{\phi}_{i y}^{(1)}=l_{ \pm z} \hat{\phi}_{i z}^{(1)} \text { @ } y=l_{ \pm}(z), \quad i=1,2, \\
\hat{\phi}_{1 z}^{(1)}=\beta c_{0}^{2} A_{1} \text { on } z=0, \\
\hat{\phi}_{1 z}^{(1)}=\hat{\phi}_{2 z}^{(1)}=-\frac{1}{2} c_{0}^{2}\left\{(1-\beta) A_{1}-(1+\beta) A_{2}\right\} \quad \text { on } z=-d .
\end{array}\right\}
$$

Thus $\hat{\phi}_{i}^{(1)}$ satisfies a Poisson equation with a Neumann boundary condition. In order for (2.7) to have a unique solution $\hat{\phi}_{i}^{(1)}$ must satisfy the compatibility condition

$$
\begin{equation*}
\iint_{R_{i}}\left\{\hat{\phi}_{i \psi y}^{(1)}+\hat{\phi}_{i z z}^{(1)}\right\} d y d z=\oint_{\partial R_{i}} \hat{\phi}_{i y}^{(1)} d z-\hat{\phi}_{i z}^{(1)} d y, \quad i=1,2 \tag{2.8}
\end{equation*}
$$

Substituting (2.7) into (2.8), it follows that, with some rearrangement,

$$
\begin{align*}
& \left.\begin{array}{l}
A_{2} S_{2}=-A_{1}\left(S_{1}-\beta c_{0}^{2} l_{0}\right), \\
= \\
=-\frac{1}{2} c_{0}^{2} l_{d}\left\{(1-\beta) A_{1}-(1+\beta) A_{2}\right\} .
\end{array}\right\} \tag{2.9}
\end{align*}
$$

Here we recall that S_{i} is the cross-sectional area of R_{i}, l_{0} is the breadth of the free surface and l_{d} is the breadth of the interface. Equations (2.9) consist of two linear homogeneous
equations for A_{1} and A_{2}, and can have a solution only if the determinant is zero. This condition implies that

$$
\begin{equation*}
c_{0}^{4} \beta(1+\beta) l_{0} l_{d}-c_{0}^{2}\left\{l_{d} S_{1}(1+\beta)+l_{d} S_{2}(1-\beta)+2 \beta l_{0} S_{2}\right\}+2 S_{1} S_{2}=0 . \tag{2.10}
\end{equation*}
$$

This is a quadratic equation for c_{0}^{2} which has two real solutions; the greater of the two solutions corresponds to a surface wave, while the smaller solution corresponds to an interfacial wave. Finally the solution for $\hat{\phi}_{i}^{(1)}$ may be put in the form

$$
\begin{equation*}
\hat{\phi}_{i}^{(1)}=A_{i} \psi_{i}+B_{i}, \quad i=1,2, \tag{2.11}
\end{equation*}
$$

where B_{i} is an undetermined constant and

$$
\left.\begin{array}{c}
\psi_{i y y}+\psi_{i z z}=1 \quad \text { in } \quad R_{i}, \quad i=1,2, \tag{2.12}\\
\psi_{i y}=l_{ \pm z} \psi_{i z} \text { on } y=l_{ \pm}(z), \quad i=1,2, \\
\psi_{1 z}=\beta c_{0}^{2} \quad \text { on } z=0, \\
\psi_{1 z}=-\left(S_{1}-\beta c_{0}^{2} l_{0}\right) / l_{d}, \quad \psi_{2 z}=S_{2} / l_{d} \quad \text { on } \quad z=-d .
\end{array}\right\}
$$

Since B_{i} is undetermined at this stage, it is convenient to impose the following extra condition on ψ_{i} :

$$
\begin{equation*}
\iint_{R_{i}} \psi_{i} d y d z=0 \tag{2.13}
\end{equation*}
$$

As we commented in § 1, the validity of our procedure requires that $\phi_{i y}$ (and $\phi_{i z}$) be much smaller than $\phi_{i x}$; in particular this means that $\psi_{i y}$ (and $\psi_{i z}$) is $O(1)$ with respect to κ. Thus our results may be applied to wide channels (i.e. when l_{d} is large) provided that $\psi_{i y}$ (and $\psi_{i z}$) is $O(1)$.

At the second order in κ^{2}, we find that

$$
\left.\begin{array}{c}
\hat{\phi}_{i y y}^{(2)}+\hat{\phi}_{i z}^{(2)}=\phi_{i}^{(1)} \quad \text { in } R_{i}, \quad i=1,2, \\
\hat{\phi}_{i y}^{(2)}=l_{ \pm z} \phi_{i z}^{(2)} \text { on } y=l_{ \pm}(z), \quad i=1,2, \tag{2.14}\\
\hat{\phi}_{1 z}^{(2)}=\beta c_{0}^{2} \hat{\phi}_{1}^{(1)}+2 \beta c_{0} c_{1} A_{1} \quad \text { on } \quad z=0, \\
\hat{\phi}_{1 z}^{(2)}=\hat{\phi}_{1 z}^{(2)}=-\frac{1}{2} c_{0}^{2}\left\{(1-\beta) \hat{\phi}_{1}^{(1)}-(1+\beta) \hat{\phi}_{2}^{(1)}\right\}-c_{0} c_{1}\left\{(1-\beta) A_{1}-(1+\beta) A_{2}\right\} \quad \text { on } z=-d .
\end{array}\right\}
$$

In order for (2.14) to have a unique solution $\hat{\phi}_{i}^{(2)}$ must satisfy the compatibility condition

$$
\begin{equation*}
\iint_{R_{i}}\left\{\hat{\phi}_{i y y}^{(2)}+\hat{\phi}_{i z z}^{(2)}\right\} d y d z=\oint_{\partial R_{t}} \hat{\phi}_{i y}^{(2)} d z-\hat{\phi}_{i z}^{(1)} d y, \quad i=1,2 . \tag{2.15}
\end{equation*}
$$

Substituting (2.14) into (2.15) and using (2.11), it may be shown that

$$
\begin{align*}
B_{2} S_{2}+B_{1}\left(S_{1}-\beta c_{0}^{2} l_{0}\right) & =2 \beta c_{0} c_{1} l_{0} A_{1}+\beta c_{0}^{2} A_{1} \int_{z=0} \psi_{1} d y, \tag{2.16a}\\
B_{2} S_{2}+\frac{1}{2} c_{0}^{2} l_{d}\left\{(1-\beta) B_{1}-(1+\beta) B_{2}\right\} & =c_{0} c_{1} l_{d}\left\{(1+\beta) A_{2}-(1-\beta) A_{1}\right\} \\
& +\frac{1}{2} c_{0}^{2} \int_{z=-d}\left\{(1+\beta) A_{2} \psi_{2}-(1-\beta) A_{1} \psi_{1}\right\} d y . \tag{2.16b}
\end{align*}
$$

These linear inhomogeneous equations for B_{1} and B_{2} have a zero determinant [namely (2.10)], hence there can be a solution only if the inhomogeneous terms are suitably constrained; this constraint determines c_{1}. It may be shown that

$$
\begin{align*}
& \frac{c_{1}}{c_{0}}\left\{2 S_{1} S_{2}-\beta(1+\beta) c_{0}^{4} l_{0} l_{d}\right\}=-\left\{S_{2}-\frac{1}{2}(1+\beta) c_{0}^{2} l_{d}\right\} \beta c_{0}^{2} \int_{z=0} \psi_{1} d y \\
&-\frac{1}{2} c_{0}^{2} \int_{z=-d}\left\{(1-\beta) S_{2} \psi_{1}+(1+\beta)\left(S_{1}-\beta c_{0}^{2} l_{0}\right) \psi_{2}\right\} d y \tag{2.17}
\end{align*}
$$

In the appendix it is shown that $c_{0} c_{1}$ is always negative.
Equation (2.10) determines the long-wave phase speed c_{0} explicitly, while (2.17) determines c_{1} once ψ_{i} has been found from (2.12). In the Boussinesq limit $\beta \rightarrow 0$, the phase speed for the interfacial wave is given by

$$
\begin{equation*}
c_{0}^{2}=\frac{2 S_{1} S_{2}}{l_{d}\left(S_{1}+S_{2}\right)}\left\{1-\frac{\beta\left(S_{1}^{2}+S_{2}^{2}\left(2 l_{0} l_{d}^{-1}-1\right)\right)}{\left(S_{1}+S_{2}\right)^{2}}+O\left(\beta^{2}\right)\right\} . \tag{2.18}
\end{equation*}
$$

Since usually $l_{0} \geqslant l_{d}$, the coefficient of the term in β is negative and the effect of a finite value of β is to decrease the phase speed. The phase speed of the surface wave is given by

$$
\begin{equation*}
\beta c_{0}^{2}=\frac{S_{1}+S_{2}}{l_{0}}\{1+O(\beta)\} \tag{2.19}
\end{equation*}
$$

The factor β occurs in the left-hand side of this equation as our scaling of the time was based on the speeds associated with the interfacial wave rather than on those associated with the surface wave. The leading term in (2.19) is identical with the phase speed for surface waves on a homogeneous fluid (Lamb 1932, § 169). However, taking the limit $\beta \rightarrow 0$ in (2.17), using (2.14), does not produce the expression for c_{1} which was obtained by Peregrine (1968) for surface waves on a homogeneous fluid. The reason is that for the surface wave the limits $\beta \rightarrow 0$ and $\kappa^{2} \rightarrow 0$ do not commute in the present formulation; it may be shown that an alternative formulation will produce the correct expression. However the limits $\beta \rightarrow 0$ and $\kappa^{2} \rightarrow 0$ do commute for the interfacial wave. For the remainder of this section we shall be concerned only with the interfacial wave whose speed is given by (2.13).

For a shallow interface $d \ll 1$, and in R_{1} we may put

$$
\begin{equation*}
l(z)=l_{d}\left\{1+b_{d} l_{d}^{-1}(z+d)+O(z+d)^{2}\right\} \tag{2.20}
\end{equation*}
$$

Here $b_{d}=l_{z}(-d)$ and is the difference in the slopes of the channel walls at the ends of the interface. Since

$$
\begin{equation*}
S_{1}=\int_{-d}^{0} l(z) d z \tag{2.21}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
S_{\mathbf{1}}=d l_{d}\left\{1+\frac{1}{2} b_{a} l_{d}^{-1} d+O\left(d^{2}\right)\right\} \tag{2.22}
\end{equation*}
$$

This expression may be substituted into (2.13) to show that the interfacial wave speed (in the limit $\beta \rightarrow 0$) is approximately given by

Next let

$$
\begin{equation*}
c_{0}^{2}=2 d\left\{1+\frac{1}{2} b_{d} l_{d}^{-1} d-l_{d} S_{2}^{-1} d+O\left(d^{2}\right)\right\} . \tag{2.23}
\end{equation*}
$$

$\psi_{1}=\frac{1}{2} S_{1}\left(l_{d} d\right)^{-1} z^{2}+\frac{1}{2}\left(1-S_{1}\left(l_{d} d\right)^{-1}\right) y^{2}-\frac{1}{2} d^{-1}\left(S_{1+}-S_{1-}\right) y+C+\hat{\psi_{1}}$,
where $y=0$ is chosen to be at the midpoint of the interface $z=-d$ and $S_{1 \pm}$ is the area of R_{1} which lies in $y \gtrless 0$. If $b_{ \pm d}=l_{ \pm z}(-d)$, then $S_{1+}-S_{1-}$ is $\frac{1}{2} d^{2}\left(b_{+d}+b_{-d}\right)(1+O(d))$. The constant C is so chosen that (2.13) is satisfied. Now $\hat{\psi}_{1}$ satisfies Laplace's equation in $R_{1}, \hat{\psi}_{1 z}$ is zero on $z=0,-d$ and $\hat{\psi}_{1 y}-l_{ \pm z} \hat{\psi}_{1 z}$ is $O(d)$ on $y=l_{ \pm}(z)$; also the integral of the last quantity over the sides $y=l_{ \pm}(z)$ is zero. It may then be shown that $\hat{\psi}_{1}$ is $O\left(d^{2}\right)$ near each end and decays exponentially away from each end within a distance $O(d)$, provided only that $l_{ \pm z}$ is $O(1)$ with respect to d. (Convert the Neumann problem for $\hat{\psi}_{1}$ to a Dirichlet problem for the conjugate function whose boundary values are zero on $z=0,-d$ and $O\left(d^{2}\right)$ on the sides $y=l_{ \pm}(z)$, whose length is $O(d)$.) Note that (2.24) implies that $\psi_{1 y}$ is $O\left(d l_{d}\right)\left(\psi_{1 z}\right.$ is $\left.O(d)\right)$ and that this is $O(1)$ provided that $d l_{d}$ is $O(1)$. Substituting (2.24) into (2.17) and taking the Boussinesq limit $\beta \rightarrow 0$, it follows that

$$
\begin{equation*}
\frac{c_{1}}{c_{0}^{3}}=-\frac{1}{4 S_{2}} \int_{z=-d} \psi_{2} d y-\frac{d}{12}+\frac{d}{192}\left\{b_{d}^{2}-3\left(b_{+d}+b_{-d}\right)^{2}\right\}+O\left(d^{2}\right) \tag{2.25}
\end{equation*}
$$

Next we shall consider the special case when the channel is rectangular and of total depth h, so that $l_{ \pm}(z)= \pm \frac{1}{2} l_{d}$ for $0>z>-h$. Then $l_{0}=l_{d}, S_{1}=d l_{d}$ and $S_{2}=(h-d) l_{d}$. The interfacial wave speed is given by (in the limit $\beta \rightarrow 0$)

$$
\begin{equation*}
c_{0}^{2}=2 d\left(1-d h^{-1}\right) \tag{2.26}
\end{equation*}
$$

It may be shown that

$$
\begin{gather*}
\psi_{1}=\frac{1}{2} z^{2}-\frac{1}{6} d^{2}, \quad \psi_{2}=\frac{1}{2}(h+z)^{2}-\frac{1}{6}(h-d)^{2} \tag{2.27}\\
c_{1} / c_{0}^{3}=-\frac{1}{12} h \tag{2.28}
\end{gather*}
$$

and hence
When the channel cross-section is a triangle of total depth h, we may put $l(z)=l_{0} h^{-1}(h+z)$ for $0>z>-h$. Hence

$$
l_{d}=l_{0} h^{-1}(h-d), \quad b_{d}=l_{0} h^{-1}, \quad S_{1}=\frac{1}{2} l_{0} h^{-1}\left(2 h d-h^{2}\right), \quad S_{2}=\frac{1}{2} l_{d}(h-d)
$$

The interfacial wave speed is given by (in the limit $\beta \rightarrow 0$)

$$
\begin{equation*}
c_{0}^{2}=2 d\left(1-d h^{-1}\right)\left(1-\frac{1}{2} d h^{-1}\right) \tag{2.29}
\end{equation*}
$$

Remarkably, this is independent of the width of the interface [(2.10) shows that, in general, c_{0} is a function of $\beta, S_{1} / l_{d}, S_{2} / l_{d}$, and l_{0} / l_{d}, but for the case of a triangular cross-section, the last three parameters are functions of d and h alone]. Also the ratio of the speed in a triangular channel to that in a rectangular channel of the same depth is $\left(1-\frac{1}{2} d h^{-1}\right)^{\frac{1}{2}}$, which varies from 1 when $d=0$ to 0.7 when $d=h$. To find c_{1} we must find ψ_{1}, which in general must be achieved numerically. However if the cross-section is an isosceles triangle (i.e. $l_{+}=-l_{-}$) then it may be shown that

$$
\begin{equation*}
\psi_{2}=\frac{1}{4}\left\{y^{2}+(h+z)^{2}\right\}-\frac{1}{8}(h-d)^{2}\left(1+\frac{1}{12} b_{d}^{2}\right) \tag{2.30}
\end{equation*}
$$

Note that $\psi_{2 y}$ is $O\left(l_{d}\right)$ and so, in this instance, l_{d} must be $O(1)$. Next, from the shallowinterface approximation (2.25) it follows that

$$
\begin{equation*}
\frac{c_{1}}{c_{0}^{3}}=-\frac{h}{16}\left(1+\frac{b_{d}^{2}}{12}\right)-\frac{d}{48}\left(1-\frac{b_{d}^{2}}{2}\right)+O\left(d^{2}\right) \tag{2.31}
\end{equation*}
$$

Finally, we note that the appropriate measure for dispersive effects is $c_{1} c_{0}^{-1} \kappa^{2}$. In terms of the dimensional wavelength $\bar{\lambda}, \kappa=2 \pi \bar{h} \bar{\lambda}^{-1}$, and so the measure for dispersion is $c_{1} c_{0}^{-1} \bar{h}^{2} \bar{\lambda}^{-2}$. For a shallow interface (2.28) and (2.31) suggest that $c_{1} c_{0}^{-3}$ varies as h;
while from (2.23), c_{0}^{2} varies as d; in this case the measure for dispersion is $\bar{d} \bar{h}^{-2}$, where \bar{d} is the dimensional depth of the interface.

3. Nonlinear long waves in a channel of varying cross-section

For weakly nonlinear long waves whose linear dispersion relation has the form (2.6) it is well known that if ϵ is a measure of weak dispersion then ϵ^{2} is the appropriate measure of wave amplitude. We shall also allow the channel cross-section to vary slowly in the x direction so we shall allow $l_{ \pm}$to be functions of x. It was shown by Johnson (1973a) that, for surface waves travelling in a rectangular channel of varying depth, the appropriate measure for the slow variation of depth is ϵ^{3}. It is easily verified that this is also the appropriate measure in the present case, and so we let $l_{ \pm}=l_{ \pm}(z, X)$, where

$$
\begin{equation*}
X=\epsilon^{3} x \tag{3.1}
\end{equation*}
$$

The boundary condition (1.6) then becomes

$$
\begin{equation*}
\phi_{i y}=l_{ \pm z} \phi_{i z}+\epsilon^{3} l_{ \pm X} \phi_{i x} \quad \text { on } \quad y=l_{ \pm}(z, X), \quad i=1,2 \tag{3.2}
\end{equation*}
$$

The cross-sectional areas S_{1} and S_{2} and the interface lengths l_{d} and l_{0} are now functions of X, so c_{0} and c_{1} are functions of X given by (2.10) and (2.17) respectively; also ψ_{i} is a function of y, z and X, the dependence on X being determined parametrically from (2.12).

We anticipate that, to leading order in ϵ, the waves will travel with speed c_{0} and hence we introduce the convected co-ordinate

$$
\begin{equation*}
\xi=\epsilon^{-2} \int_{0}^{X}\left\{c_{0}\left(X^{\prime}\right)\right\}^{-1} d X^{\prime}-\epsilon t . \tag{3.3}
\end{equation*}
$$

Then we seek a solution in which η and ζ are functions of ξ and X and the ϕ_{i} are functions of y, z, ξ and X. We note that

$$
\begin{equation*}
\frac{\partial}{\partial t} \equiv-\epsilon \frac{\partial}{\partial \xi}, \quad \frac{\partial}{\partial x} \equiv \epsilon c_{0}^{-1} \frac{\partial}{\partial \xi}+\epsilon^{3} \frac{\partial}{\partial X} \tag{3.4}
\end{equation*}
$$

and put

$$
\begin{equation*}
\eta=\epsilon^{2}\left(\eta^{(0)}+\epsilon^{2} \eta^{(1)}+\ldots\right), \quad \zeta=\epsilon^{2}\left(\zeta^{(0)}+\epsilon^{2} \zeta^{(1)}+\ldots\right), \quad \phi_{i}=\epsilon\left(\phi_{i}^{(0)}+\epsilon^{2} \phi_{i}^{(1)}+\ldots\right) \tag{3.5}
\end{equation*}
$$

These expressions are then substituted into (1.1) and the boundary conditions (1.4), (1.5) and (3.2). Before proceeding with this calculation we note that (1.1) becomes

$$
\begin{equation*}
\phi_{i y y}+\phi_{i z z}+\epsilon^{2} c_{0}^{-2} \phi_{i \xi 5}+2 \epsilon^{4} c_{0}^{-1} \phi_{i \xi X}-\epsilon^{4} c_{0 x} c_{0}^{-2} \phi_{i \xi}+\epsilon^{6} \phi_{i x x}=0 \quad \text { in } \quad R_{i}, \quad i=1,2 . \tag{3.6}
\end{equation*}
$$

At the lowest order in ϵ it may easily be shown that ϕ_{i} is independent of y and z and hence we put

$$
\begin{equation*}
\phi_{i}^{(0)}=A_{i}(\xi, X), \quad i=1,2 . \tag{3.7}
\end{equation*}
$$

These functions A_{i} are the counterparts of the constants A_{i} obtained in $\S 2$. Comparing (3.7) with (3.4) and (3.5) we see that derivatives with respect to x and t are $O(\epsilon)$, while derivatives with respect to y and z are $O\left(\epsilon^{2}\right)$. As we noted in the introduction, this is the crucial assumption in the theory, rather than the assumption that the horizontal
dimension of the channel is of the same order of magnitude as the vertical dimension. Also the boundary conditions (1.4) and (1.5) show that

$$
\begin{equation*}
\zeta^{(0)}=\beta A_{1 \xi}, \quad \eta^{(0)}=\frac{1}{2}(1+\beta) A_{2 \xi}-\frac{1}{2}(1-\beta) A_{1 \xi} . \tag{3.8}
\end{equation*}
$$

At the next order in ϵ, it follows from (3.6) and the boundary conditions (3.2), (1.4) and (1.5) that

$$
\left.\begin{array}{c}
\phi_{i y y}^{(1)}+\phi_{i z z}^{(1)}=-c_{0}^{-2} A_{i \xi \xi} \quad \text { in } \quad R_{i}, \quad i=1,2, \tag{3.9}\\
\phi_{i y}^{(1)}=l_{ \pm z} \phi_{i z}^{(1)} \quad \text { on } \quad y=l_{ \pm}(z), \quad i=1,2, \\
\phi_{1 z}^{(1)}=-\zeta_{\xi}^{(0)} \quad \text { on } z=0, \\
\phi_{1 z}^{(1)}=\phi_{2 z}^{(1)}=-\eta_{\xi}^{(0)} \quad \text { on } \quad z=-d .
\end{array}\right\}
$$

Also the boundary conditions (1.4) and (1.5) show that

$$
\left.\begin{array}{c}
\zeta^{(1)}=\beta\left(\phi_{1 \xi}^{(1)}-\frac{1}{2} c_{0}^{-2} A_{1 \xi}^{2}\right) \quad \text { on } \quad z=0, \tag{3.10}\\
2 \eta^{(1)}=(1+\beta) \phi_{2 \xi}^{(1)}-(1-\beta) \phi_{1 \xi}^{(1)}-\frac{1}{2} c_{0}^{-2}(1+\beta) A_{2 \xi}^{2}+\frac{1}{2} c_{0}^{-2}(1-\beta) A_{1 \xi}^{2} \quad \text { on } \quad z=-d .
\end{array}\right\}
$$

The solution of (3.9) is given by

$$
\begin{equation*}
\phi_{i}^{(1)}=-c_{0}^{-2} A_{i \xi \xi} \psi_{i}+B_{i}, \quad i=1,2, \tag{3.11}
\end{equation*}
$$

where B_{i} is an undetermined function of ξ and X and ψ_{i} is defined by (2.12) and (2.13). For (3.11) to be a solution the compatibility condition (2.8) must be satisfied, and this leads to (2.9) and (2.10) as before. At this stage c_{0} is a known function of X, and from (2.9) and (3.8), A_{1}, A_{2} and $\xi^{(0)}$ are known in terms of $\eta^{(0)}$.

At second order in ϵ we find that

$$
\left.\begin{array}{c}
\phi_{i y y}^{(2)}+\phi_{i z z}^{(2)}=-c_{0}^{-2} \phi_{i \xi 5}^{(1)}-2 c_{0}^{-1} A_{i \xi X}+c_{0 X} c_{0}^{-2} A_{i \xi} \quad \text { in } \quad R_{i}, \quad i=1,2, \\
\phi_{i i y}^{(2)}=l_{ \pm z} \phi_{i z}^{(2)}+l_{ \pm X} c_{0}^{-1} A_{i \xi} \text { on } y=l_{ \pm}(z), \quad i=1,2, \\
\phi_{1 z}^{(2)}=-\zeta_{\xi}^{(1)}+c_{0}^{-2}\left(\zeta^{(0)} A_{1 \xi}\right)_{\xi}+\zeta^{(0)} \phi_{1 y y}^{(1)} \text { on } z=0, \tag{3.12}\\
\phi_{i z}^{(2)}=-\eta_{\xi}^{(1)}+c_{0}^{-2}\left(\eta^{(0)} A_{i \xi}\right)_{\xi}+\eta_{0}^{(0)} \phi_{i y y}^{(1)} \quad \text { on } z=-d, \quad i=1,2 .
\end{array}\right\}
$$

The solution for $\phi_{i}^{(2)}$ must satisfy the compatibility condition (2.8); as in §2 this leads to two equations for B_{i}, and the condition that these equations have a solution for B_{i} provides the required equation for $\eta^{(0)}$. Examination of (3.10) and inhomogeneous terms in (3.12) shows that the equation for $\eta^{(0)}$ involves $\eta^{(0)}, \eta_{X}^{(0)}, \eta^{(0)} \eta_{\xi}^{(0)}$ and $\eta_{\xi \xi 5}^{(0)}$. After considerable manipulation we find that

$$
\begin{equation*}
\eta_{X}^{(0)}+\delta \eta^{(0)} \eta_{\xi}^{(0)}-c_{1} c_{0}^{-4} \eta_{\xi 5 \xi}^{(0)}+\nu \eta^{(0)}=0 \tag{3.13}
\end{equation*}
$$

where c_{1} (a function of X) is defined by (2.17). The presence of c_{1} in the coefficient of $\eta_{\xi 5 \xi}^{(0)}$ is to be expected from the linear dispersion relation (2.6). The coefficient δ is given by

$$
\begin{equation*}
\delta\left\{1+\frac{\beta(1-\beta) l_{0} l_{d} c_{0}^{4}}{2\left(\mathrm{~S}_{1}-\beta c_{0}^{2} l_{0}\right)^{2}}\right\}=-\frac{b_{d}}{2 l_{d} c_{0}}-\frac{\beta^{2}(1-\beta) b_{0} l_{d}^{2} c_{0}^{5}}{4\left(S_{1}-\beta c_{0}^{2} l_{0}\right)^{3}}+\frac{3 l_{d}^{2} c_{0}}{4}\left\{\frac{(1+\beta)}{S_{2}^{2}}-\frac{(1-\beta) S_{1}}{\left(S_{1}-\beta c_{0}^{2} l_{0}\right)^{3}}\right\} . \tag{3.14}
\end{equation*}
$$

Here $b_{d}=l_{z}(-d, X)$ and $b_{0}=l_{z}(0, X)$. Also the coefficient ν is given by
where

$$
\left.\begin{array}{c}
\nu=\gamma^{-1} \gamma_{X} \tag{3.15}\\
\gamma^{2}=c_{0} l_{d}\left\{1+\frac{\beta(1-\beta) l_{0} l_{d} d_{0}^{4}}{2\left(S_{1}-\beta c_{0}^{c} l_{0}\right)^{2}}\right\}
\end{array}\right\}
$$

Equation (3.13) may be simplified by putting

$$
\begin{equation*}
\hat{\eta}=\gamma \eta^{(0)} \tag{3.16}
\end{equation*}
$$

and then it follows that

$$
\begin{equation*}
\hat{\eta}_{X}+\delta \gamma^{-1} \hat{\eta} \hat{\eta}_{5}-c_{1} c_{0}^{-4} \hat{\eta}_{55 \xi}=0 \tag{3.17}
\end{equation*}
$$

Equation (3.17) can now be recognized as a variable-coefficient Korteweg-de Vries equation. The coefficient γ may be interpreted as the appropriate Green's law factor for the present problem. In the linear, non-dispersive limit (3.17) shows that $\hat{\eta}$ is conserved; it may be shown that this result is equivalent to the conservation of energy flux.

First let us note that if the channel has uniform cross-section, so that, in particular, c_{0} is a constant, then $\xi=\epsilon\left(c_{0}^{-1} x-t\right)$. If we put $\tau=c_{0} \xi=\epsilon\left(x-c_{0} t\right)$ and $T=\epsilon^{3} t$, (3.13) then reduces to the more familiar constant-coefficient Korteweg-de Vries equation

$$
\begin{equation*}
\eta_{T}^{(0)}+c_{0}^{2} \delta \eta^{(0)} \eta_{T}^{(0)}-c_{1} \eta_{T \tau T}^{(0)}=0, \tag{3.18}
\end{equation*}
$$

at least to within an error of $O\left(\epsilon^{2}\right)$.
Next let us consider the Boussinesq limit $\beta \rightarrow 0$. The phase speed c_{0} is then given by (2.18) for the interfacial wave and (2.19) for the surface wave. In the same limit, for the interfacial wave

$$
\left.\begin{array}{c}
c_{0} \delta=-\frac{b_{d}}{2 l_{d}}+\frac{3 l_{d}\left(S_{1}-S_{2}\right)}{2 S_{1} S_{2}}+O(\beta), \tag{3.19}\\
\gamma=\left(c_{0} l_{d}\right)^{\frac{1}{2}}+O(\beta) .
\end{array}\right\}
$$

Since, for most applications, $S_{2}>S_{1}$ and b_{d} is positive, (3.19) shows that δ will usually be negative. For the surface wave,

$$
\left.\begin{array}{l}
\frac{c_{0} l_{0} S_{2} \delta}{l_{d}\left(S_{1}+S_{2}\right)}=-\frac{b_{0}}{2 l_{0}}+\frac{3 l_{0}}{2\left(S_{1}+S_{2}\right)}+O(\beta), \tag{3.20}\\
\frac{l_{0} S_{2} \gamma}{l_{d}\left(S_{1}+S_{2}\right)}=\frac{\left(c_{0} l_{0}\right)^{\frac{1}{2}}}{2 \beta}+\{1+O(\beta)\} .
\end{array}\right\}
$$

In the limit $\beta \rightarrow 0$

$$
\begin{equation*}
\eta^{(0)}=\zeta^{(0)} \frac{l_{0} S_{2}}{l_{d}\left(S_{1}+S_{2}\right)}\{1+O(\beta)\} \tag{3.21}
\end{equation*}
$$

and it may be shown that (3.17) becomes
where

$$
\left.\begin{array}{c}
\xi_{X}+\delta^{\prime} \gamma^{\prime}-1 \xi \xi_{\xi}-c_{1} c_{0}^{-4} \xi_{\xi \xi 5}=0 \tag{3.22}\\
\xi=\gamma^{\prime} \zeta^{(0)} \\
\gamma^{\prime}=\left(c_{0} l_{0} / 2 \beta\right)^{\frac{1}{2}}\{1+O(\beta)\} \\
c_{0} \delta^{\prime}=-\frac{b_{0}}{2 l_{0}}+\frac{3 l_{0}}{2\left(S_{1}+S_{2}\right)}+O(\beta)
\end{array}\right\}
$$

In the limit $\beta \rightarrow 0$, (3.22) is the variable-coefficient Korteweg-de Vries equation for surface waves in a channel of varying cross-section. If the channel has uniform crosssection then (3.22) agrees with the Korteweg-de Vries equation derived by Peregrine (1968), for surface waves in a channel of uniform cross-section. Equation (3.22) also generalizes the result obtained by Johnson (1973a) for surface waves in a rectangular channel of varying depth. In this case $\beta c_{0}^{2}=h, c_{0} \delta^{\prime}=3 / 2 h$ and $c_{1} c_{0}^{-3}=-\frac{1}{12} h$, and our results agree with those obtained by Johnson (loc. cit.).

In the shallow-interface approximation ($d \ll 1$), c_{0} is given by (2.23) and c_{1} is given by (2.25). For the interfacial wave, (3.19) becomes

$$
\left.\begin{array}{l}
\delta=-\frac{3}{(2 d)^{\frac{3}{2}}}\left\{1-\frac{l_{d} d}{2 S_{2}}-\frac{5 b_{d} d}{12 l_{d}}+O\left(d^{2}, \beta\right)\right\}, \tag{3.23}\\
\gamma=l_{d}^{\frac{1}{d}}(2 d)^{\frac{1}{2}}\left\{1-\frac{l_{d} d}{4 S_{2}}+\frac{b_{d} d}{8 l_{d}}+O\left(d^{2}, \beta\right)\right\} .
\end{array}\right\}
$$

Since d does not vary with X, we see from (2.23) and (3.23) that c_{0} and δ are largely unaffected by the variable cross-section when the interface is shallow, while γ varies principally as $l_{d}^{\frac{1}{d}}$. The coefficient c_{1} is given by (2.25) and may be expected to depend on the cross-section S_{2} in a complicated manner.

Next we shall consider the special case when the channel is a rectangle of total depth h. Then c_{0} and c_{1} are given by (2.26) and (2.28), while from (3.19)

$$
\begin{equation*}
c_{0}^{3} \delta=-3(1-2 d / h)+O(\beta) . \tag{3.24}
\end{equation*}
$$

This result agrees with that obtained by Keulegan (1953; see also Long 1956; Lee \& Beardsley 1974). Finally, consider the case when the channel is a triangle of total depth h and $l(z)=l_{0}(h+z) / h$ for $0>z>-h$. Then c_{0} and c_{1} are given by (2.29) and (2.31) while from (3.19) it may be shown that

$$
\begin{equation*}
2 c_{0}^{3} \delta=\left(-6+22 d / h-11 d^{2} / h^{2}\right)(1+O(\beta)) \tag{3.25}
\end{equation*}
$$

Thus δ is negative (positive) when $d / h<0.33$ (>0.33). This result may be compared with the corresponding result (3.24) for a rectangle, where δ is negative (positive) when $d / h<0.50(>0.50)$. Like c_{0}, δ is independent of the width of the interface.

4. Discussion

In this section we shall consider the solutions of (3.13) or equivalently (3.17), which we shall display again for convenience:

$$
\begin{equation*}
\hat{\eta}_{X}+\delta \gamma^{-1} \hat{\eta} \hat{\eta}_{5}-c_{1} c_{0}^{-4} \hat{\eta}_{555}=0, \quad \text { where } \quad \hat{\eta}=\gamma \eta^{(0)} \tag{4.1}
\end{equation*}
$$

Here $\eta^{(0)}$ is the height of the interface, the 'Green's law' factor γ is defined by (3.15), the nonlinear coefficient δ is defined by (3.14) and the dispersion coefficient c_{1} is defined by (2.17). Also we recall that ξ is the convected co-ordinate

$$
\epsilon^{-2} \int_{0}^{x}\left\{c_{0}\left(X^{\prime}\right)\right\}^{-1} d X^{\prime}-\epsilon t, \quad X=\epsilon^{3} x
$$

and c_{0} is the linear long-wave phase speed (2.10). On the basis of the shallow-interface and Boussinesq approximation (3.23), we shall assume that the coefficient δ is negative.

Also we note that c_{0} is positive and c_{1} is negative. Equation (4.1) is to be solved with an 'initial' condition that specifies $\eta^{(0)}$ as a function of ξ at some particular fixed value of X; from (3.3) this is equivalent to specifying $\eta^{(0)}$ as a function of time (at some fixed value of X).

4.1. Nonlinear steepening

Observations of long internal waves show that the generation of an internal surge is followed by a phase in which nonlinear steepening is the dominant process, which is followed in turn by the formation of shorter period waves due to the interplay between dispersion and nonlinearity (see Lee \& Beardsley 1974; Farmer 1978). In this subsection we shall ignore dispersive effects, and so ignore the term whose coefficient is c_{1} in (3.17). The equation to be considered is thus

$$
\begin{equation*}
\hat{\eta}_{X}+\delta \gamma^{-1} \hat{\eta} \hat{\eta}_{\xi}=0, \quad \hat{\eta}=\gamma \eta^{(0)} . \tag{4.2}
\end{equation*}
$$

The general solution of (4.2) is
where

$$
\left.\begin{array}{c}
\eta^{(0)}=\sigma^{-1} f\left(\xi+\sigma \eta^{(0)} S\right) \tag{4.3}\\
S=-\int_{0}^{x} \delta \sigma^{-1} d X, \quad \sigma=\gamma \gamma_{0}^{-1} \cdot
\end{array}\right\}
$$

Here γ_{0} (a constant) is the value of γ at $X=0$, and $f(\xi)$ is the specified initial value of $\eta^{(0)}$ at $X=0$. The solution (4.3) remains valid provided that

$$
\begin{equation*}
1 \neq S f^{\prime}\left(\xi+\sigma \eta^{(\omega)} S\right) \tag{4.4}
\end{equation*}
$$

Since δ is negative, S is positive and (4.4) cannot be violated if f^{\prime} is negative; if f^{\prime} is positive then the first value of S at which (4.4) is violated defines a breaking distance. In general (4.3) shows that waves of elevation break backwards as they propagate, while waves of depression break forwards. These results agree with those of Long (1972), who considered the special case when the channel has a constant rectangular cross-section. Of course, as the surge begins to steepen, dispersive effects become important and the last term in (4.2) must be retained; this will be discussed in §4.2. Meanwhile we shall continue to discuss (4.2).

Further progress depends on specifying the coefficients δ and γ. In the Boussinesq limit ($\beta \rightarrow 0$) and the shallow-interface approximation ($d \ll 1$), δ and γ are given by (3.23); since d does not vary with X, δ remains effectively constant while γ varies as $l_{d}^{\frac{1}{d}}$. Farmer (1978) has observed internal surges in Lake Babine, which narrows by a factor of two in the direction of the surge propagation. If γ decreases with increasing X, then it is apparent from (4.2) and (4.3) that the steepening process is enhanced both by the Green's Law factor and by the increased value of S for a given X. To be specific let us assume that l_{d} varies linearly with X, so that

$$
\begin{equation*}
\sigma=(1-q X)^{\frac{1}{2}} \tag{4.5}
\end{equation*}
$$

where q is a constant. Then, on substituting into (4.2), it follows that

$$
\begin{equation*}
-\delta X=S\left(1+\frac{1}{4} q \delta^{-1} S\right) \tag{4.6}
\end{equation*}
$$

For instance, for that value of X at which l_{d} has been reduced by a factor of two, the fractional increase in the value of S relative to $-\delta X$ (the value of S if l_{d} is constant, i.e. $q=0$ or $\sigma=1$) is approximately $\frac{1}{7}$. To gauge the effect on the wave amplitude, let

Figure 2. Plot of $\eta^{(0)} / p \xi$ against $X^{\prime}\left[\right.$ see (4.9)] for $q^{\prime}=0, \frac{4}{4}, \frac{1}{2}, \frac{3}{4}, 1$.
us suppose that $f(\xi)$ contains a segment of constant positive slope p and that outside this segment $f^{\prime}(\xi)$ is negative. Specifically we put

$$
\begin{equation*}
f(\xi)=p \xi \quad \text { for } \quad|\xi|<\xi_{1} \tag{4.7}
\end{equation*}
$$

The solution determined from (4.3) is

$$
\begin{equation*}
\sigma \eta^{(0)}=p \xi(1-p S)^{-1} \quad \text { for } \quad|\xi|<\xi_{1}(1-p S) . \tag{4.8}
\end{equation*}
$$

The solution is valid for $p S<1$, and fails at $p S=1$, which defines the breaking distance. The solution in the region $|\xi|>\xi_{1}(1-p S)$ need not concern us, as there is no steepening in this region. We wish to compare this solution with the corresponding solution when l_{d} is a constant ($q=0$ or $\sigma=1$). From (4.6) and (4.8), $\eta^{(0)}(p \xi)^{-1}$ is a function of $X^{\prime}=p|\delta| X$, with a parametric dependence on $q^{\prime}=q(p|\delta|)^{-1}$:

$$
\begin{equation*}
\frac{\eta^{(0)}}{p \xi}=\sigma^{-1}\left\{1-\frac{2}{q^{\prime}}(1-\sigma)\right\}^{-1}, \tag{4.9}
\end{equation*}
$$

where

$$
\sigma=\left(1-q^{\prime} X^{\prime}\right)^{\frac{1}{2}}
$$

Figure 2 displays this function for various values of q^{\prime}. When $q^{\prime}=0, \eta^{(0)}$ has doubled in value when $X^{\prime}=0.5$; by contrast, when $q^{\prime}=1$ (i.e. l_{d} has been reduced by a factor of two), $\eta^{(0)}$ has increased in value by a factor of $3 \cdot 4$. In summary, a decrease in the width of the channel can be as effective as nonlinear processes in increasing the amplitude of the surge, and this may be relevant to the large amplitude surges observed in Lake Babine. However, in comparing our theory with observations, it should be noted that the theory ignores Coriolis forces, which may be significant in the development of the surge, which takes place on a time scale of a day, rather than an hour.

4.2. Soliton formation

When the internal surge approaches the breaking distance, dispersive effects become important and the equation to be solved is than (4.1), with an initial condition that specifies $\eta^{(0)}$ at some appropriate value of X; the initial $\eta^{(0)}$ is given by (4.3) and one of the principal effects of allowing the cross-section to vary is to alter this initial condition. If the Korteweg-de Vries equation (4.1) has constant coefficients, then there is a solitary-wave solution, or soliton:
where

$$
\left.\begin{array}{c}
\eta^{(0)}=a \operatorname{sech}^{2}\left\{k\left(\xi-V^{-1} X\right)\right\}, \tag{4.10}\\
V=3(\delta a)^{-1}, \quad 4 k^{2}=-a \delta c_{0}^{4}\left(3 c_{1}\right)^{-1} .
\end{array}\right\}
$$

Since c_{I} and δ are negative, the amplitude a is also negative and this is a wave of depression travelling in the $+X$ direction. Its speed is $c_{0}\left(1+\epsilon^{2} c_{0} V^{-1}\right)$ and its e-folding width is $2 c_{0}(\epsilon k)^{-1}$. It is now well known that the constant-coefficient Kortewegde Vries equation also has N-soliton solutions (see Whitham 1974, chap. 17) and that an initially smooth wave profile will evolve into a train of solitons. If $f(\xi)$ is the initial condition, then an asymptotic expression for the number N of solitons produced is

$$
\begin{equation*}
N \sim \frac{1}{\pi}\left(\frac{\delta c_{0}^{4}}{6 c_{1}}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty}|f(\xi)|^{\frac{1}{2}} d \xi \tag{4.11}
\end{equation*}
$$

Using the Boussinesq limit ($\beta \rightarrow 0$) and the shallow-interface approximation, we can assume that δ and c_{0} do not vary with X. Then (4.10) shows that the solitary-wave speed (for a given amplitude) is unaffected by a change in the cross-section, but that the width is affected, being decreased by a decrease in c_{1}. Examining (4.11), we see that the number N of solitons produced is increased by a decrease in c_{1}, and is also increased by an increase in the initial condition, i.e.

$$
\int_{-\infty}^{\infty}|f(\xi)|^{\frac{1}{2}} d \xi
$$

is increased.
Hunkins \& Fliegel (1973) have observed the formation of a train of short period internal waves in Seneca Lake and Farmer (1978) has made similar observations in Lake Babine. The latter are particularly interesting as the formation of a train of internal waves was most prominent at a point in the lake where the cross-section had narrowed by a factor of two from the region where the internal surge was generated; also the maximum depth decreases by a factor of three. If we approximate the crosssection by a triangle and use (2.26) to estimate c_{1}, then c_{1} decreases by approximately 25% from the generation region, thus favouring the formation of solitons. However, the major factor affecting the formation of solitons in Lake Babine is likely to be the decrease in the width l_{d} and the corresponding decrease in γ, which causes an increase in the nonlinear steepening as described in §4.1. If $\bar{\lambda}$ is the dimensional width of a solitary wave, \bar{h} is the dimensional depth and \bar{a} is the dimensional amplitude, then (4.10) shows that

$$
\begin{equation*}
\frac{\bar{a} \bar{\lambda}^{2}}{\bar{h}^{3}}=\frac{-4 c_{0}^{2} a}{k^{2}}=\frac{36 c_{1}}{\delta c_{0}^{2}} . \tag{4.12}
\end{equation*}
$$

For a shallow interface $c_{1} c_{0}^{-3}$ varies as $h[c f . ~(2.28) ~ a n d ~(2.31)], ~ c o r i e s ~ a s ~ d[c f . ~(2.23)], ~$ while δ varies as $d^{-\frac{3}{2}}$ [cf. (3.23)]. The right-hand side of (4.12) then varies as d^{2}. Hence we may deduce from (4.12) that nonlinear effects are balancing dispersive effects when $\bar{a} \bar{\lambda}^{2}$ is comparable with $\bar{h} \bar{d}^{2}$, where \bar{d} is the dimensional depth of the interface; since $\bar{d} \bar{h} \bar{\lambda}^{-2}$ is the appropriate measure for dispersion when the interface is shallow, this implies that the appropriate measure for nonlinear effects is $\bar{a} \bar{d}^{-1}$. Farmer (1978) has observed internal waves of amplitude 10 m (in a depth of approximately 100 m), phase speed $0.2 \mathrm{~m} \mathrm{~s}^{-1}$ and wavelength approximately 460 m . Using (2.31) we estimate that $c_{1} c_{0}^{-3}$ is approximately -0.77 at the point where the waves are observed (b_{d} is approximately 15). Also, using (2.29) to estimate c_{0} and (3.25) to estimate δ, with $d h^{-1}=0 \cdot 2$, we find that (4.12) gives a value for $\bar{\lambda}$ of 550 m . That this is an overestimate is probably due to an overestimate of c_{1}; if the lake is modelled by a rectangular channel then $c_{1} c_{0}^{-3}$ is $-\frac{1}{12}$; in general, c_{1} is very sensitive to the shape of the cross-section. By contrast, c_{0} and δ depend mainly on d and are fairly insensitive to the shape of the cross-section. Using (2.29) with $d h^{-1}=0 \cdot 2$, we find that the theoretical dimensional phase speed is $0.24 \mathrm{~m} \mathrm{~s}^{-1}$ (for the observed temperature difference across the interface in Lake Babine $\beta=0.2 \times 10^{-3}$).

4.3. Slowly varying solitary wave

When the coefficients of the Korteweg-de Vries equation (4.1) are functions of X, there is no simple analytic solution. However, when the variation in the channel crosssection is $O\left(\sigma \epsilon^{3}\right)$, where $\sigma \ll 1$, then there is an asymptotic solution which describes a slowly varying solitary wave. The procedure for constructing this solution has been described by Grimshaw (1970) and Johnson (1973b) for surface solitary waves travelling in a rectangular channel of varying depth, so we shall give only a brief description here.

We shall suppose that c_{0}, c_{1}, γ and δ are functions of $\widehat{X}=\mu X$ and we shall then seek a solution of (3.17) in which $\eta^{(0)}$ depends on \widehat{X} and θ, where

$$
\left.\begin{array}{c}
\eta^{(0)}=a \operatorname{sech}^{2} k \theta+\mu \eta^{(0)}+O\left(\mu^{2}\right), \tag{4.13}\\
\theta=\xi-\int_{0}^{\hat{x}}(\mu V)^{-1} d \hat{X}
\end{array}\right\}
$$

Here a, k and V are related by the formulae in (4.10), and are functions of \hat{X}. Substituting (4.13) into (3.17) shows that, from the term of order one in μ,

$$
\begin{equation*}
-\gamma V^{-1} \eta_{1 \theta}^{(0)}+\gamma \delta\left\{a \operatorname{sech}^{2} k \theta \eta_{1}^{(0)}\right\}_{\theta}-\gamma c_{1} c_{0}^{-4} \eta_{1 \theta \theta \theta}^{(0)}+\partial\left(\gamma a \operatorname{sech}^{2} k \theta\right) / \partial \hat{X}=0 . \tag{4.14}
\end{equation*}
$$

The necessary and sufficient condition that this equation for $\eta_{1}^{(0)}$ should have a solution which is bounded as $\theta \rightarrow \pm \infty$ is

$$
\begin{equation*}
\frac{\partial}{\partial \bar{X}} \int_{-\infty}^{\infty}\left(\gamma a \operatorname{sech}^{2} k \theta\right)^{2} d \theta=0 . \tag{4.15}
\end{equation*}
$$

On integrating and using (4.10), this condition becomes

$$
\begin{equation*}
c_{1} c_{0}^{-4} \gamma^{4} \delta^{-1} a^{3}=\text { constant } \tag{4.16}
\end{equation*}
$$

This equation determines the variation of the amplitude a as \hat{X} varies. In the Boussinesq limit ($\beta \rightarrow 0$) and the shallow-interface approximation, c_{0} [see (2.23)] and
δ [see (3.23)] do not vary with \hat{X}, while γ [see (3.23)] varies as $l_{\vec{d}}^{\frac{1}{2}}$; hence a varies as $l_{d}^{-\frac{2}{2}} c_{1}^{-\frac{1}{3}}$. In a rectangular channel c_{1} [see (2.28)] varies as h, while in a triangular channel c_{1} [see (2.31)] varies as $h\left(1+\frac{1}{12} b_{d}^{2}\right)$.

The result (4.16) may also be applied to a surface solitary wave. If a^{\prime} is the amplitude of such a wave then

$$
\begin{equation*}
c_{1} c_{0}^{-4} \gamma^{\prime 4} \delta^{\prime-1} a^{\prime 3}=\text { constant } \tag{4.17}
\end{equation*}
$$

where γ^{\prime} and δ^{\prime} are defined in (3.22). This result follows most directly by applying the above method to (3.22) directly. For a rectangular channel c_{0} varies as $h^{\frac{1}{2}}, c_{1}$ varies as $h^{\frac{5}{2}}, \delta^{\prime}$ varies as $h^{-\frac{3}{2}}$ and γ^{\prime} varies as $l_{0}^{\frac{1}{2}} h^{\frac{1}{4}}$; it follows from (4.17) that a^{\prime} then varies as $h^{-1} l_{0}^{-\frac{2}{3}}$, which agrees with the result obtained by Miles (1977), who considered surface solitary waves in a slowly varying channel (see also Grimshaw (1970) and Johnson (1973b), who considered only the effect of changes in the depth h).

I am grateful to Dr D. M. Farmer for showing me a draft of his manuscript prior to publication.

Appendix. Alternative expression for c_{1}

In this appendix we shall derive an alternative expression to (2.17) for c_{1} and hence show that $c_{0} c_{1}$ is negative. First let us consider the integral identity

$$
\begin{equation*}
\iint_{R}\left\{u\left(u_{y y}+u_{z z}\right)+u_{y}^{2}+u_{z}^{2}\right\} d y d z=\oint_{\partial R} u\left(u_{y} d z-u_{z} d y\right) \tag{A1}
\end{equation*}
$$

where u is any function (with continuous second derivatives in R). Then apply (A 1) to $\hat{\phi}_{i}$ in R_{i}; using (2.5) it follows that
where

$$
\left.\begin{array}{c}
\kappa^{2} I+Q=\int_{z=0} \beta(1-\beta) \kappa^{2} c^{2} \hat{\phi}_{1}^{2} d y+\frac{1}{2} \int_{z=-d} \kappa^{2} c^{2}\left\{(1-\beta) \hat{\phi}_{1}-(1+\beta) \hat{\phi}_{2}\right\}^{2} d y, \\
I=(1-\beta) \iint_{R_{1}} \phi_{1}^{2} d y d z+(1+\beta) \iint_{R_{2}} \phi_{2}^{2} d y d z \tag{A2}\\
Q=(1-\beta) \iint_{R_{1}}\left(\hat{\phi}_{1 y}^{2}+\phi_{\mathbf{1} z}^{2}\right) d y d z+(1+\beta) \iint_{R_{2}}\left(\hat{\phi}_{2 y}^{2}+\hat{\phi}_{2 z}^{2}\right) d y d z
\end{array}\right\}
$$

If we now differentiate (A 2) with respect to κ, integrate by parts where necessary and use (2.5) again, it may be shown that

$$
\begin{equation*}
\left(d c^{2} / d \kappa^{2}\right)\left(\kappa^{4} I+\kappa^{2} Q\right)=-c^{2} Q \tag{A3}
\end{equation*}
$$

Since I and Q are positive, it follows immediately that $d c^{2} / d \kappa^{2}$ is negative, and comparison with (2.6) shows that $c_{0} c_{1}$ is negative. Further, on substituting (2.6) and (2.11) into (A 3) it may be shown that
where

$$
\left.\begin{array}{c}
2 c_{1} / c_{0}=-Q_{0} / I_{0} \\
I_{0}=(1-\beta) A_{1}^{2} S_{1}+(1+\beta) A_{2}^{2} S_{2}, \tag{A4}\\
Q_{0}=(1-\beta) A_{1}^{2} \iint_{R_{1}}\left(\psi_{1 y}^{2}+\psi_{1 z}^{2}\right) d y d z+(1+\beta) A_{2}^{2} \iint_{R_{z}}\left(\psi_{2 y}^{2}+\psi_{2 z}^{2}\right) d y d z .
\end{array}\right\}
$$

Next, using (A 1) and (2.12), it follows that

$$
\left.\begin{array}{c}
\iint_{R_{1}}\left(\psi_{1 y}^{2}+\psi_{1 z}^{2}\right) d y d z=\beta c_{0}^{2} \int_{z=0} \psi_{1} d y+\frac{\left(S_{1}-\beta c_{0}^{2} l_{0}\right)}{l_{d}} \int_{z=-a} \psi_{1} d y, \\
\iint_{R_{3}}\left(\psi_{2 y}^{2}+\psi_{2 z}^{2}\right) d y d z=\frac{S_{2}}{l_{d}} \int_{z=0} \psi_{2} d y . \tag{A5}
\end{array}\right\}
$$

On substituting (A 5) into (A 4), it is easily shown that (A 4) agrees with (2.17)

REFERENCES

Farmer, D. M. 1978 Observations of long nonlinear internal waves in a lake. J. Phys. Ocean. 8 (to appear).
Grimshaw, R. 1970 The solitary wave in water of variable depth. J. Fluid Mech. 42, 639-656. Halpern, D. 1971 Observations of short-period internal waves in Massachusetts Bay. J. Mar. Res. 29, 116-132.
Hunkins, K. \& Fliegel, M. 1973 Internal undular surges in Seneca Lake : a natural occurrence of solitons. J. Geophys. Res. 78, 539-548.
Johnson, R. S. $1973 a$ On the development of a solitary wave moving over an uneven bottom. Proc. Camb. Phil. Soc. 73, 183-203.
Johnson, R. S. $1973 b$ On an asymptotic solution of the Korteweg-de Vries equation with slowly varying coefficients. J. Fluid Mech. 60, 813-824.
Keulegan, G. H. 1953 Characteristics of internal solitary waves. J. Res. Nat. Bur. Stand. 51, 133-140.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Lee, C.-V. \& Beardsley, R.C. 1974 The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res. 79, 453-462.
Long, R. R. 1956 Solitary waves in one- and two-fluid systems. Tellus 8, 460-471.
Long, R. R. 1972 The steepening of long internal waves. Tellus 24, 88-99.
Miles, J. W. 1977 Note on a solitary wave in a slowly varying channel. J. Fluid Mech. 80, 149-152.
Peregrine, D. H. 1968 Long waves in a uniform channel of arbitrary cross-section. J. Fluid Mech. 32, 353-365.
Shen, M. C. 1968 Long waves in a stratified fluid over a channel of arbitrary cross-section. Phys. Fluids 11, 1853-1862.
Shen, M. C. \& Keller, J. B. 1973 Ray method for nonlinear wave propagation in a rotating fluid of variable depth. Phys. Fluids 16, 1565-1572.
Thorpe, S. A. 1971 Asymmetry of the internal seiche in Loch Ness. Nature 231, 306-308.
Thorpe, S. A. 1974 Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness. J. Fluid Mech. 69, 509-527.
Thorpe, S. A., Hall, A. \& Crofts, I. 1972 The internal surge in Loch Ness. Nature 237, 96-98.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Academic Press.
Winant, C. D. 1974 Internal surges in coastal waters. J. Geophys. Res. 79, 4523-4526.
Ziegenbein, J. 1969 Short internal waves in the Strait of Gibraltar. Deep-Sea Res. 16, 479-487.

